# Edexcel Maths S2 

Mark Scheme Pack

$$
2005-2015
$$

EDEXCEL FOUNDATION - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education


## EDEXCEL FOUNDATION - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN :
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject STATISTICS 6684
Paper No. S2


## EDEXCEL FOUNDATION - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
June 2001

## Advanced Supplementary/Advanced Level

## General Certificate of Education



## EDEXCEL FOUNDATION - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
June 2001

## Advanced Supplementary/Advanced Level

General Certificate of Education
Subject STATISTICS 6684


## EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

# Jan 2002 <br> Advanced Subsidiary /Advanced Level <br> General Cervificate of Education 

| $\begin{aligned} & \text { Question } \\ & \text { number } \end{aligned}$ | Scheme Marks |
| :---: | :---: |
| 1. (a) <br> (b) <br> (c) <br> (d) | Collection/group / set of individuals or items B1  <br> A r.v. that is a function of known observations from a population B1B1 (1) <br> College students. Mean approval ratiang of $75 \%$ B1.B1 (2) <br> (Probability) distribution of all possible mean approval <br> ratings of sample size 50 B1 (2) <br>  Bependent    |
| 2. | $\mathrm{H}_{0}: \lambda=2.5 ; \mathrm{H}_{1}: \lambda>2.5$ (Accept $\left.\mathrm{H}_{0}: \lambda=10 ; \mathrm{H}_{1}: \lambda>10\right)$ B1,B1  <br> 1 week $X \sim P o(2.5), 4$ weeks $X \sim P o(10)$ $P o(10)$ B1 <br> $P(X \geq 14)=1-0.8645=0.1355$  M1A1 <br> Insufficient evidence to reject $\mathrm{H}_{0}$ M1  <br> Sales have not increased after  <br> appointment of new salesman.  <br> [ Note; $\mathrm{P}(X \leq 14)=0.9165, \mathrm{P}(X \leq 15)=0.9153$ for M1A1] Context <br>  A1ft   |
| 3. (a) <br> (b) <br> (c) | $X$ is no of passengers who do not turn up for this flight. <br> [Notes: (b)Use of $\mathrm{N}(6,5.82) \mathrm{B} 1 \mathrm{P}(X<3.5) \mathrm{M} 1 \mathrm{~A} 0$ <br> (c) $\mathrm{P}(X>4.5) \mathrm{M} 1 \mathrm{~A} 0$ <br> (b) Use of $\mathrm{N}(6,6) \mathrm{B} 0$ <br> (b) Exact Bin no credit.] |

## EDEXCEL FOUNDATION

## Stewart House 32 Russell Square London WC1B 5DN

Jum 2002

## Advanced Subsidiary /Advanced LeveI

General Certificate of Education
Subject STATISTICS 6684


## EDEXCEL FOUNDATION

## Stewart House 32 Russell Square London WC1B 5DN

Jen 2002

## Advanced Subsidiary /Advanced Level

General Certificate of Education
Subject STATISTICS 6684
Paper No. S2

| Question number | Scheme | Marks |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 5.(a) } \\ & \text { (b) }{ }^{\text {(b) }} \\ & \text { (c) } \\ & \text { (d) } \end{aligned}$ | Failed connections occur singly, independently and at a constant rate of $\mathbf{3}$ per hour, randomly <br> $X$ is no of failed connections every hour. $P(X=0)=0.0498$ $P(X>4)=1-0.8153=0.1847 \quad \text { Require ' } 1 \text { minus', } 0.1847$ $X \sim \operatorname{Po}(24)$ <br> Y is no of users that fail to connect at their first attempt $\begin{aligned} & Y \sim N(24,24) \\ & P(Y \geq 12)=1-P\left(Z<\frac{11.5-24}{\sqrt{24}}\right) \\ &=P(Z<-2.55) \\ &=0.9946 \end{aligned}$ Normal, both | B1,B1  <br> M1A1 (2) <br> M1A1 (2) <br> B1 $(1)$ <br>   <br> B1,B1  <br> M1,A1  <br> A1  <br> A1  |
|  |  | B1 <br> M1,A1 <br> B1 <br> M1 <br> A1 <br> M1 <br> A1ft |

## EDEXCEL FOUNDATION

## Stewart House 32 Russell Square London WC1B 5DN

Jaw 2002

## Advanced Subsidiary /Advanced Level

## General Certificate of Education

Subject STATISTICS 6684
Paper No. S2


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. (a) <br> (b) <br> (c) <br> (d) | Survey is less time consuming. <br> It is easier/quicker to analyse the results <br> List of members <br> The members | B1  <br> B1 (2) <br> B1 (1) <br> B1 (1) <br>  (4 marks) |
| (a) <br> (b) <br> (c) | $Y$ is the random variable consisting of any function of the $X_{i}$ that involves no other quantities. $Y=\bar{X}=\frac{\sum X}{n}$ <br> When all possible samples are taken and the values of $Y$ found then the values form a probability distribution (known as the sampling distribution of $Y$ ) | B1 B1  <br> B1 (2) <br> B1 B1  <br>   <br>   <br>  (5 marks) |
| 3. <br> (a) <br> (b) | $\begin{aligned} & \mathrm{E}(R)=\frac{\alpha+\beta}{2}=3, \Rightarrow \alpha+\beta=6 \\ & \operatorname{Var}(R)=\frac{(\beta-\alpha)^{2}}{12}=\frac{25}{3}, \Rightarrow(\beta-\alpha)^{2}=100 \\ & \alpha=-2, \beta=8 \\ & \mathrm{P}(\mathrm{R}<6.6)=\frac{1}{10} \times 8.6=0.86 \end{aligned}$ | M1 A1 <br> M1 A1 <br> M1 A1 A1 (7) <br> M1 A1 <br> (2) <br> (9 marks) |
| 4. (a) | $\mathrm{H}_{0}: \rho=0.20, \mathrm{H}_{1}: \rho<0.20$ <br> $X=$ number buying single packets, $X \sim \mathrm{~B}(25,0.20)$ $\mathrm{P}(X \leq 2)=0.0982$ <br> $0.0982>5 \%$, so not significant <br> No reason to suspect the percentage who bought crisps in single packets that day was lower than usual $\mathrm{H}_{0}: \rho=0.03, \mathrm{H}_{1}: \rho \neq 0.03$ <br> $Y=$ number buying bumper packs, $Y \sim \mathrm{~B}(300,0.03) \Rightarrow Y \sim \operatorname{Po}(9)$ $\mathrm{P}(Y \leq 3)=0.0212 \text { and } \mathrm{P}(Y \leq 15)=0.9780 \Rightarrow \mathrm{P}(Y \geq 16)=0.0220$ <br> Critical region $Y \leq 3$ and $Y \geq 16$ <br> Significance level $=0.0212+0.0220=0.0432$ | B1 B1 <br> M1 A1 <br> M1 <br> A1 ft <br> (2) <br> B1 B1 <br> M1 <br> M1 A1 <br> A1 <br> (6) <br> B1 ft <br> (1) <br> (13 marks) |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 5. (a) | $L \sim \mathrm{~N}\left(\mu, 0.3^{2}\right), \mathrm{P}(L<150)=0.05 \Rightarrow \mathrm{P}\left(\mathrm{Z}<\frac{150-\mu}{0.3}\right)=0.05$  $\begin{aligned} & \Rightarrow \frac{150-\mu}{0.3}=,-1.6449 \\ & \mu=150.49347=150.5 \end{aligned}$ <br> $X$ represents number less than $150 \mathrm{~cm} . X \sim \mathrm{~B}(10,0.05)$ $\mathrm{P}(X \leq 2)=0.9885$ <br> Normal approximation $\mu=500 \times 0.05=25, \sigma^{2}=23.75$ or 25 $\begin{aligned} \mathrm{P}(X<35) & \approx \mathrm{P}\left(\mathrm{Z}<\frac{34.5-25}{\sqrt{23.75 \text { or } 25}}\right) \\ & \approx \mathrm{P}(\mathrm{Z}<1.95 \text { or } 1.9) \\ & \approx 0.9744 \text { or } 0.9713 \end{aligned}$ $\pm 0.5, \text { standardise }$ | $$ |
| 6. $\begin{aligned} & \text { (a) } \\ &(b) \\ & \\ & \\ & \\ & \\ & \text { (c) }\end{aligned}$ | $X$ represents number of faults per $25 \mathrm{~m} \Rightarrow X \sim \operatorname{Po}(1.5)$ $\mathrm{P}(X=4)=0.0471$ <br> $Y$ represents number of faults per $100 \mathrm{~m} \Rightarrow Y \sim \operatorname{Po}(6.0)$ $\mathrm{P}(Y<6)=\mathrm{P}(\mathrm{Y} \leq 5)=0.4457$ <br> $R$ represents number of 100 m balls containing fewer than 6 faults $R \sim \mathrm{~B}(3,0.4457)$ $\mathrm{P}(R=1)=C_{1}^{3} \times 0.4457 \times(1-0.4457)^{2}=0.41082 \quad \text { accept } 0.411$ <br> $S$ represents number of faults in a 500 m ball $\Rightarrow S \sim \operatorname{Po}(30)$ $\begin{aligned} \mathrm{P}(23 \leq \mathrm{S} \leq 33) & \approx \mathrm{P}\left(\frac{22.5-30}{\sqrt{30}} \leq \mathrm{Z} \leq \frac{33.5-30}{\sqrt{30}}\right) \quad \pm 0.5, \text { standardise } \\ & \approx \mathrm{P}(-1.37 \leq \mathrm{Z} \leq 0.64) \\ & \approx 0.6536 \end{aligned}$ |  |



| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. (a) <br> (b) <br> (c) | Continuous uniform (Rectangular) $\mathrm{U}(-0.5,0.5)$ <br> $\mathrm{P}($ error within 0.2 cm$)=2 \times 0.2=0.4$ <br> $\mathrm{P}($ both within 2 cm$)=0.4^{2}=0.16$ | B1 B1 $(2)$ <br> M1 A1 $(2)$ <br> M1 A1 $(2)$ <br> (6 marks)  |
| 2. <br> (a) <br> (b) <br> (c) | $\begin{align*} & X \sim \mathrm{Po}(7) \\ & \mathrm{P}(X \leq 2)=0.0296 \\ & \mathrm{P}(X \geq 13)=1-0.9370=0.0270 \\ & \text { Critical region is }(X \leq 2) \cup(X \geq 13)  \tag{5}\\ & \text { Significance level }=0.0296+0.0270=0.0566 \\ & X=5 \text { is not the critical region } \Rightarrow \text { insufficient evidence to reject } \mathrm{H}_{0} \end{align*}$ | $$ |
| 3. <br> (a) <br> (b) <br> (c) | Weeds grow independently, singly, randomly and at a constant rate (weeds $/ \mathrm{m}^{2}$ ) <br> Let $X$ represent the number of weeds $/ \mathrm{m}^{2}$ <br> $X \sim \operatorname{Po}(0.7)$, so in $4 \mathrm{~m}^{2}, \lambda=4 \times 0.7=2.8$ $\begin{aligned} \mathrm{P}(Y<3) & =\mathrm{P}(Y=0)+\mathrm{P}(Y=1)+\mathrm{P}(Y=2) \\ & =\mathrm{e}^{-2.8}\left(1+2.8+\frac{2.8^{2}}{2}\right) \\ & =0.46945 \end{aligned}$ <br> Let $X$ represent the number of weeds per $100 \mathrm{~m}^{2}$ $\begin{aligned} & X \sim \mathrm{Po}(100 \times 0.7=70) \\ & \mathrm{P}(X>66) \end{aligned} \begin{aligned} & \approx \mathrm{P}(Y>66.5) \text { where } Y \sim \mathrm{~N}(70,70) \\ & \approx \mathrm{P}\left(Z>\frac{66.5-70}{\sqrt{70}}\right) \\ & \approx \mathrm{P}(Z>-0.41833 \ldots)=0.6628 \end{aligned}$ | B1 B1 B1 M1 A1 A1 B1 M1 M1 A1 M1 A1 (12 marks) |


| Question Number | Scheme | Marks |  |
| :---: | :---: | :---: | :---: |
| 4. $\begin{array}{r}\text { (a) } \\ \\ (b) \\ \\ \\ (c) \\ \\ \\ \\ \text { (d) }\end{array}$ |  | $\begin{aligned} & \text { M1 A1 } \\ & \text { M1 } \end{aligned}$ |  |
|  |  |  |  |
|  |  | A1 | (2) |
|  |  | M1 A1 |  |
|  |  | A1 |  |
|  |  | M1 |  |
|  |  | A1 |  |
|  |  | A1 | (6) |
|  |  | M1 |  |
|  |  | A1 |  |
|  |  | M1 A1 | (4) |
|  |  |  | rks) |



| Question <br> Number | Scheme | Marks |  |
| :---: | :---: | :---: | :---: |
| 6. $\begin{array}{r}\text { (a) } \\ (b) \\ (c) \\ (d) \\ \\ \\ (e) \\ \\ \\ (f) \\ \\ \\ (g)\end{array}$ | All subscribers to the magazine | B1 | (1) |
|  | A list of all members that had paid their subscriptions | B1 | (1) |
|  | Members who have paid | B1 | (1) |
|  | Advantage: total accuracy | B1 |  |
|  | Disadvantage: time consyming to obtain data and analyse it | B1 | (2) |
|  | Let $X$ represent the number agreeing to change the name $\therefore X \sim \mathrm{~B}(25,0.4)$ | B1 |  |
|  | $\mathrm{P}(X=10)=\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 9)=0.1612$ | M1 A1 | (3) |
|  | $\mathrm{H}_{0}: p=0.40, \mathrm{H}_{1}: p<0.40$ | B1, B1 |  |
|  | $\mathrm{P}(X \leq 6)=0.0736>0.05 \Rightarrow$ not significant | M1 A1 |  |
|  | No reason to reject $\mathrm{H}_{0}$ and conclude $\%$ is less than the editor believes | A1 | (5) |
|  | Let $X$ represent the number agreeing to change the name $\therefore X \sim \mathrm{~B}(200,0.4)$ |  |  |
|  | $\mathrm{P}(71 \leq X<83) \approx \mathrm{P}(70.5 \leq Y<82.5)$ where $Y \sim \mathrm{~N}(80,48)$ | B1 B1 |  |
|  | $\approx \mathrm{P}\left(\frac{70.5-80}{\sqrt{48}} \leq X<\frac{82.5-80}{\sqrt{48}}\right)$ | M1 M1 |  |
|  | $\approx \mathrm{P}(-1.37 \leq X<0.36)$ | A1 A1 |  |
|  | $=0.5533$ | A1 | (7) |
|  |  |  | rks) |


| Question number | Mark scheme | Marks |
| :---: | :---: | :---: |
| 1. (a) <br> (b) | A random variable; that is, a function involving no unknown quantities <br> If all possible samples are taken; then their values will form a probability distribution called the sampling distribution | $\begin{array}{\|rr} \hline \text { B1; B1 } & (2) \\ \text { B1; B1 } \\ \text { (4 marks) } \end{array}$ |
| 2. (a) <br> (b) | $\begin{aligned} & \lambda \text { is large or } \lambda>10 \\ & Y \sim \mathrm{~N}(30,30) \\ & \begin{aligned} & \mathrm{P}(Y>28)=1-\mathrm{P}(Y \leq 28.5) \\ & \quad 1-\mathrm{P}\left(Z \leq \frac{28.5-30}{\sqrt{30}}\right) \\ & \quad=1-\mathrm{P}(Z \leq-0.273) \\ & \quad=0.607 \end{aligned} \quad \text { may be implied } \end{aligned}$ | B1 B1 M1 A1 M1 A1 A1 (7 marks) |

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper $)$

( $\mathrm{ft}=$ follow through mark; $\left(^{*}\right.$ ) indicates final line is given on the paper)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper $)$

| Question number | Mark scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 7. ${ }^{(a)}$ | $\int_{-1}^{0} k\left(x^{2}+2 x+1\right) \mathrm{d} x=1$ | limits needed and $=1$ | M1 |
|  | $\left[k\left(\frac{x^{3}}{3}+x^{2}+x\right)\right]_{-1}^{0}=1$ | attempt at integration | M1 A1 |
|  | $k=3 \quad(*)$ |  | A1 (4) |
|  | $\mathrm{E}(X)=\int_{-1}^{0} x . \mathrm{f}(x) \mathrm{d} x$ |  | M1 |
|  | $=\int_{-1}^{0}\left(3 x^{3}+6 x^{2}+3 x\right) \mathrm{d} x$ | limits needed | A1 |
|  | $=\left[\frac{3 x^{4}}{4}+2 x^{3}+\frac{3 x^{2}}{2}\right]_{-1}^{0}$ | integration and substituting limits | M1 |
|  | $=-\frac{1}{4}$ |  | A1 (4) |
|  | $\int_{-1}^{x_{0}}\left(3 x^{3}+6 x^{2}+3 x\right) \mathrm{d} x=\left[x^{3}+3 x^{2}+3 x\right]_{-1}^{x_{0}}$ |  | M1 |
|  | $=x_{0}+3 x_{0}{ }^{2}+3 x_{0}+1$ |  | A1 |
|  | $\mathrm{F}(x)= \begin{cases}0 & x<-1 \\ x^{3}+3 x^{2}+3 x+1 & -1 \leq x \leq 0 \\ 1 & x>0\end{cases}$ |  | B1 B1 (4) |
|  | $\mathrm{P}(-0.3<X<0.3)=\mathrm{F}(0.3)-\mathrm{F}(-0.3)$ |  | M1 |
|  | $=1-0.343$ |  | A1 |
|  | $=0.657$ |  | A1 (3) |
|  |  |  | (15 marks) |

( $\mathrm{ft}=$ follow through mark; $\left({ }^{*}\right)$ indicates final line is given on the paper)

## EDEXCEL FOUNDATION

## Stewart House 32 Russell Square London WC1B 5DN

## January 2004

## Advanced Subsidiary/Advanced Level <br> General Certificate of Education



## EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2004

## Advanced Subsidiary /Advanced Level

General Certificate of Education
Subject STATISTICS 6684
Paper No. S2

| Question number | Scheme Marks |
| :---: | :---: |
| 4 <br> (a) | $n$ large, $p$ small $\quad$ B1,B1 |
| (b) | Let $X$ represent the number of people catching the virus, $X \square \mathrm{~B}\left(12, \frac{1}{150}\right) \quad$ Implied $\quad$ B1 $\mathrm{P}(X=2)=\mathrm{C}_{2}^{12}\left(\frac{1}{150}\right)^{2}\left(\frac{149}{150}\right)^{10},=0.0027$ Use of Bin including $\mathrm{C}_{2}^{12}, 0.0027(4)$ only $\quad$ M1A1,A1 |
| (c) | $X \square \mathrm{Po}(n p)=\mathrm{Po}(8)$ Poisson, 8 B1,B1 <br> $\mathrm{P}(X<7)=\mathrm{P}(X \leq 6)=0.3134$ $X \leq 6$ for method, 0.3134 M1A1 |
|  | (Total 10 Marks) |
| 5(a) (b) | Vehicles pass at random / one at a time / independently / at a constant rate Any 2\&context B1B1dep |
| (b) | $X$ is the number of vehicles passing in a 10 minute interval, $\begin{aligned} & X \square \operatorname{Po}\left(\frac{51}{60} \times 10\right)=\operatorname{Po}(8.5) \quad \text { Implied } \quad \operatorname{Po}(8.5) \mathbf{B 1} \\ & \mathrm{P}(X=6)=\frac{8.5^{6} \mathrm{e}^{-8.5}}{6!},=0.1066(\text { or } 0.2562-0.1496=0.1066) \text { Clear attempt using 6, 4dp M1A1 } \end{aligned}$ |
| (c) | $\mathrm{P}(X \geq 9)=1-\mathrm{P}(X \leq 8)=0.4769$ |
| (d) | $\mathrm{H}_{0}: \lambda=8.5, \mathrm{H}_{1}: \lambda<8.5$ One tailed test only for alt hyp B1 $\int, \mathbf{B 1 S}{ }^{\text {(2) }}$ <br> $\mathrm{P}(X \leq 4 \mid \lambda=8.5)=0.0744,>0.05$ $X \leq 4$ for method, 0.0744 M1,A1 <br> ( Or $\mathrm{P}(X \leq 3 \mid \lambda=8.5)=0.0301,<0.05$ so $\mathrm{CR} X \leq 3$ correct CR M1,A1) <br> Insufficient evidence to reject $\mathrm{H}_{0}$, 'Accept' M1 |
|  | so no evidence to suggest number of vehicles has decreased. |

## EDEXCEL FOUNDATION

## Stewart House 32 Russell Square London WC1B 5DN

January 2004

## Advanced Subsidiary /Advanced Level

## General Certificate of Education



## EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

## January 2004

## Advanced Subsidiary /Advanced Level

## General Certificate of Education






EDEXCEL
190 High Holborn London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education

Subject: Statistics


EDEXCEL
190 High Holborn London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education
Paper: $\mathbf{S 2}$

(b) Atiter $\left.z^{2=3.06} \Rightarrow p=0.9989>0.99\right\} B_{1}$ equir to 2.3263
or $p=0.0011<0.01\}$ SI equir to 2.3263

EDEXCEL
190 High Holborn London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education


EDEXCEL
190 High Holborn London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education
Paper: $\mathbf{S 2}$

(b) Let Yrypere-t number of accidents in 3 moathes

$$
\begin{gather*}
\therefore Y_{\sim} p_{0}(3 \times 3=9) \\
P(y>4)=1-0.0550=0.9450 \tag{2}
\end{gather*}
$$

Cen be implied BI
(c) $H_{0}: \lambda=3 ; H_{1}: \lambda<3$

$$
\begin{aligned}
& \text { Stailed; alow both } \mathrm{Bl} \\
& 3031 \text { M1 }(0.025) A D
\end{aligned}
$$

$$
P(X \leq 1 \mid \lambda=3)=0.1991 ;>0.05
$$

$\therefore$ lnseffivient erideace to cupp ort the dain that the meen woutei of accidents hon beeo riduud.
(MB: $C R: X \leqslant 0 ; X=1$ not in $C R$; saree conclution $\Rightarrow B 1, M 1, A 1$ )
(d)

$$
\begin{array}{lrl}
H_{0}: \lambda=24 \times 3=72 ; H_{1}: \lambda<72 \\
\alpha=0.05 \Rightarrow C R: z<-1.644) & \text { Can beiouplied } \lambda_{2} 72 & \mathrm{Bl}_{1} \\
\text { both H2 2 H } & \mathrm{B}_{1} \\
& -1.6449 & \mathrm{~B}_{1}
\end{array}
$$

Using Normal opfroximation wit $\mu=\sigma^{2}=71$. Can be impliced B1

$$
z=\frac{55.5-72}{\sqrt{72}}=-1.94454 . \ldots
$$

Stand: with MI $\pm 0 \circ f, \mu \in \sigma$
Awet-1.94/s AI

Since $-1.944 \ldots$ is in the $C R, t_{0}$ is rijected. There is evideace that the rastriction has roduced Content 2 AIf (7) clecreridence the nouber of accideats.
Aliter (d) $p=0.0262<0.05$ Awret 0.026 \&

EDEXCEL
190 High Holborn London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education


## GCE

Edexcel GCE
Statistics S2 (6684)

Summer 2005

Mark Scheme (Results)

| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 1(a) | $\mathrm{X} \sim \mathrm{B}(\mathrm{n}, 0.04)$ | Implied | B1 |
|  | $\mathrm{E}(\mathrm{X})=\mathrm{np}$ |  | M1 |
|  | $5=0.04 n$ | Use of $\mathrm{np}=5$ |  |
|  | $\mathrm{n}=125$ | 125 | A1 |
|  |  |  | (3) |
| (b) | $\begin{aligned} & \mathrm{E}(\mathrm{X})=3 \\ & \mathrm{np}=3 \end{aligned}$ | $\mathrm{np}=3$ | B1 |
|  | $\mathrm{sd}=\sqrt{n p q}=\sqrt{3(1-0.04)}$ | Use of $n p q$ | M1 |
|  | $=\sqrt{2.88}$ | $\sqrt{3(1-0.04)}$ | A1 |
|  | $=1.70$ | awrt 1.70 | A1 |
|  |  |  | (4) |
|  |  |  | Total 7 |
| 2(a) | $\mathrm{f}(\mathrm{x})=\frac{1}{4} \quad, 2 \leq x \leq 6$ | $\frac{1}{4}$ and range | B1 |
|  | $=0$, otherwise | 0 and range | B1 |
| (b) | $E(X)=4$ by symmetry or formula | $4$ | B1 (2) |
|  |  |  | (1) |
| (c) | $\operatorname{Var}(X)=\frac{(6-2)^{2}}{12}$ | Use of formula | M1 |
|  | $=\frac{4}{3}$ | $1.3 \text { or } 1 \frac{1}{3} \text { or } \frac{4}{3} \text { or } 1.33$ | A1 <br> (2) |
| (d) | $\mathrm{F}(\mathrm{x})=\int_{2}^{x} \frac{1}{4} \mathrm{dt}=\left[\frac{1}{4} t\right]_{2}^{x}$ | Use of $\int \mathrm{f}(x) \mathrm{dx}$ | M1 |
|  | $=\frac{1}{4}(x-2)$ | $\frac{1}{4}(x-2)$ or equiv. | A1 |
|  | $\mathrm{F}(\mathrm{x})=\frac{1}{4}(\mathrm{x}-2), 2 \leq x \leq 6$ | $\frac{1}{4}(x-2)$ and range | B1ft |
|  | $\begin{array}{ll} =1 & , x>6 \\ =0 & , x<2 \end{array}$ | ends and ranges | B1 (4) |
| (e) | $\mathrm{P}(2.3<\mathrm{X}<3.4)=\frac{1}{4}(3.4-2.3)$ | Use of area or $\mathrm{F}(\mathrm{x})$ | M1 |
|  | $=0.275$ | $0.275-\frac{11}{40}$ | A1 |
|  |  | 0.275 or $\frac{11}{40}$ | Total 11 |



| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 5(a) | $\begin{aligned} & \mathrm{X} \sim \mathrm{~B}(200,0.02) \\ & \underline{\mathrm{n} \text { large, } \mathrm{P} \text { small so } \mathrm{X} \sim \mathrm{Po}(\mathrm{np})=\mathrm{Po}(4)} \end{aligned}$ | Implied conditions, $\mathrm{P}_{0}$ (4) | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1, \mathrm{~B} 1 \end{aligned}$ |
|  | $\begin{align*} \mathrm{P}(\mathrm{X}=5) & =\frac{e^{-4} 4^{5}}{5!} \\ & =0.1563 \tag{5} \end{align*}$ | $\begin{array}{r} \mathrm{P}(X \leq 5)-\mathrm{P}(X \leq 4) \\ 0.1563 \end{array}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
| (b) | $\begin{aligned} \mathrm{P}(\mathrm{X}<5) & =\mathrm{P}(\mathrm{X} \leq 4) \\ & =0.6288 \end{aligned}$ | $\begin{array}{r} \mathrm{P}(\mathrm{X} \leq 4) \\ 0.6288 \end{array}$ | M1 <br> A1 <br> (2) <br> Total 7 |
| 6(a) | $\int_{0}^{2} k\left(4 x-x^{3}\right) \mathrm{dx}=1$ | $\int f(x) d x=1$, all correct | M1 A1 |
|  | $\mathrm{k}\left[2 x^{2}-\frac{1}{4} x^{4}\right]_{0}^{2}=1$ | [*] | A1 |
|  | $\begin{aligned} & \mathrm{k}(8-4)=1 \\ & \mathrm{k}=\frac{1}{4} \end{aligned}$ | cso | $\begin{aligned} & \text { A1 } \\ & \\ & \\ & \text { (4) }\end{aligned}$ |
| (b) | $\mathrm{E}(\mathrm{X})=\int^{2} \mathrm{x} \cdot \frac{1}{4}\left(4 \mathrm{x}-\mathrm{x}^{3}\right) \mathrm{dx}$ | $\int x f(x) d x$ | M1 |
|  | $\begin{aligned} & =\left[\frac{1}{3} x^{3}-\frac{1}{20} x^{5}\right]_{0}^{2} \\ & =\frac{16}{15} \end{aligned}$ | $[*]$ $1.07 \text { or } 1 \frac{1}{15} \text { or } \frac{16}{15} \text { or } 1.06$ | A1 <br> A1 <br> (3) |
| (c) | At mode, $f^{\prime}(\mathrm{x})=0$ | Implied | M1 |
|  | $\begin{aligned} 4-3 x^{2} & =0 \\ x & =\frac{2}{\sqrt{3}} \end{aligned}$ | Attempt to differentiate $\sqrt{\frac{4}{3}}$ or 1.15 or $\frac{2}{\sqrt{3}}$ or $\frac{2 \sqrt{3}}{3}$ | M1 <br> A1 (3) |
| (d) | At median, $\int_{0}^{x} \frac{1}{4}\left(4 t-t^{3}\right) \mathrm{dt}=\frac{1}{2}$ | $\mathrm{F}(x)=\frac{1}{2} \text { or } \int \mathrm{f}(x) \mathrm{d} x=\frac{1}{2}$ | M1 |
|  | $\begin{aligned} & \frac{1}{4}\left(2 x^{2}-\frac{1}{4} x^{4}\right)=\frac{1}{2} \\ & x^{4}-8 x^{2}+8=0 \end{aligned}$ | Attempt to integrate | M1 |
|  | $\mathrm{x}^{2}=4 \pm 2 \sqrt{2}$ | Attempt to solve quadratic | M1 |
|  | $\mathrm{x}=1.08$ | Awrt 1.08 | A1 (4) |



| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1.(a) | Let $X$ be the random variable the number of heads. $\begin{array}{rlrl} X \sim \operatorname{Bin}(4,0.5) & \\ \mathrm{P}(X=2) & =C_{2}^{4} 0.5^{2} 0.5^{2} & & \text { Use of Binomial including }{ }^{n} \mathrm{Cr} \\ & =0.375 & & \text { or equivalent } \end{array}$ | M1 A1 |
| (b) | $\begin{align*} \mathrm{P}(X=4) & \text { or } \mathrm{P}(X=0) \\ & =2 \times 0.5^{4}  \tag{0.5}\\ & =0.125 \end{align*}$ <br> or equivalent | B1 <br> M1 <br> A1 |
| (c) | $\begin{array}{rlr} \mathrm{P}(\mathrm{HHT}) & =0.5^{3} & \text { no }{ }^{\text {n }} \mathrm{Cr} \\ & =0.125 & \text { or equivalent } \end{array}$ <br> or $\begin{aligned} \mathrm{P}(\mathrm{HHTT}) & +\mathrm{P}(\text { HHTH }) \\ = & 2 \times 0.5^{4} \\ & =0.125 \end{aligned}$ | M1 <br> A1 <br> (2) <br> Total 7 marks |
|  | 1a) $2,4,6$ acceptable as use of binomial. |  |




| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4. | $\begin{aligned} & X=\mathrm{Po}(150 \times 0.02)=\mathrm{Po}(3) \\ & \text { po, } 3 \\ & \qquad \begin{aligned} \mathrm{P}(X>7) & =1-\mathrm{P}(X \leq 7) \\ & =0.0119 \end{aligned} \end{aligned}$ <br> Use of normal approximation max awards B0 B0 M1 A0 in the use 1- $\mathrm{p}(x<7.5)$ $\begin{gathered} \mathrm{z}=\frac{7.5-3}{\sqrt{2.94}}=2.62 \\ \begin{aligned} p(x>7) & =1-p(x<7.5) \\ & =1-0.9953 \\ & =0.0047 \end{aligned} \end{gathered}$ | B1,B1(dep) <br> M1 <br> A1 <br> Total 4 marks |
| 5.(a) | $\begin{array}{lc} \int_{2}^{3} k x(x-2) \mathrm{d} x=1 & \int f(x)=1 \\ {\left[\frac{1}{3} k x^{3}-k x^{2}\right]_{2}^{3}=1} & \text { attempt } \int \text { need either } x^{3} \text { or } x^{2} \\ (9 k-9 k)-\left(\frac{8 k}{3}-4 k\right)=1 & \text { correct } \int \\ k=\frac{3}{4}=0.75 & \text { cso } \end{array}$ | M1 <br> M1 <br> A1 <br> A1 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (b) | $\begin{array}{rlr} \mathrm{E}(X) & =\int_{2}^{3} \frac{3}{4} x^{2}(x-2) \mathrm{d} x & \text { attempt } \int x f(x) \\ & =\left[\frac{3}{16} x^{4}-\frac{1}{2} x^{3}\right]_{2}^{3} & \text { correct } \int \end{array}$ | M1 A1 |
|  | $=2.6875=2 \frac{11}{16}=2.69(3 \mathrm{sf}) \quad \text { awrt } 2.69$ | A1 (3) |
| (c) | $\mathrm{F}(x)=\int_{2}^{x} \frac{3}{4}\left(t^{2}-2 t\right) \mathrm{d} t \quad \int \mathrm{f}(x) \text { with variable limit or }+\mathrm{C}$ | M1 |
|  | $=\left[\frac{3}{4}\left(\frac{1}{3} t^{3}-t^{2}\right)\right]_{2}^{x}$ <br> correct integral | A1 |
|  | lower limit of 2 or $\mathrm{F}(2)=0$ or $\mathrm{F}(3)=1$ | A1 |
|  | $=\frac{1}{4}\left(x^{3}-3 x^{2}+4\right)$ | A1 |
| (d) | $\mathrm{F}(x)=\begin{array}{ll} 0 & x \leq 2 \\ \frac{1}{4}\left(x^{3}-3 x^{2}+4\right) & 2<x<3 \\ 1 & x \geq 3 \end{array} \quad \text { middle, ends }$ | $\mathrm{B} 1 \checkmark, \mathrm{~B} 1$ <br> (6) |
|  | $\begin{array}{rlr} \mathrm{F}(x) & =\frac{1}{2} & \\ \frac{1}{4}\left(x^{3}-3 x^{2}+4\right) & =\frac{1}{2} & \text { their } \mathrm{F}(\mathrm{x})=1 / 2 \end{array}$ | M1 |
|  | $\begin{aligned} x^{3}-3 x^{2}+2 & =0 \\ x & =2.75, x^{3}-3 x^{2}+2>0 \\ x & =2.70, x^{3}-3 x^{2}+2<0 \Rightarrow \text { root between } 2.70 \text { and } 2.75 \end{aligned}$ <br> (or $\mathrm{F}(2.7)=0.453, \mathrm{~F}(2.75)=0.527 \Rightarrow$ median between 2.70 and 2.75 | M1 <br> (2) |
|  |  | Total 15 marks |





## GCE

Edexcel GCE
Statistics S2 (6684)

J une 2006

Mark Scheme
(Results)

## une <br> 6684 Statistics S2 <br> Mark Scheme









# Mark Scheme (Results) J anuary 2007 

GCE

## GCE Mathematics

## Statistics S2 (6684)

J anuary 2007 6684 Statistics S2

## Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. <br> (a) <br> (b) (i) <br> (ii) | A random variable; function of known observations (from a population). data OK <br> Yes <br> No | B1 <br> B1 <br> (2) <br> B1 <br> (1) <br> B1 <br> (1) <br> Total 4 |
| 2. <br> (a) | $\begin{array}{rlrl} \mathrm{P}(J \geq 10) & =1-\mathrm{P}(J \leq 9) & \text { or }=1-\mathrm{P}(J<10) \\ & =1-0.9919 & & \text { implies method } \\ & =0.0081 & & \text { awrt } 0.0081 \end{array}$ | M1 <br> A1 <br> (2) |
| (b) | $\begin{array}{rlr} \mathrm{P}(K \leq 1) & =\mathrm{P}(K=0)+\mathrm{P}(K=1) \text { both, implied below even with ' } 25 \text { ' missing } \\ & =(0.73)^{25}+25(0.73)^{24}(0.27) & \text { clear attempt at ' } 25 \text { ' required } \\ & =0.00392 & \text { awrt } 0.0039 \text { implies M } \end{array}$ | M1 <br> M1 <br> A1 <br> (3) <br> Total 5 |






| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7. <br> (a) | $\begin{aligned} 1-\mathrm{F}(0.3) & =1-\left(2 \times 0.3^{2}-0.3^{3}\right) \\ & =0.847 \end{aligned}$ | M1 A1 <br> (2) |
| (b) | $\begin{aligned} & \mathrm{F}(0.60)=0.5040 \\ & \mathrm{~F}(0.59)=0.4908 \quad \text { both required awrt } 0.5,0.49 \end{aligned}$ | M1A1 |
|  | 0.5 lies between therefore median value lies between 0.59 and 0.60 . | B1 <br> (3) |
| (c) | $\mathrm{f}(x)=\left\{\begin{array}{lc} -3 x^{2}+4 x, & 0 \leq x \leq 1, \\ 0, & \text { otherwise } . \end{array} \quad\right. \text { attempt to differentiate, all correct }$ | M1A1 |
| (d) | $\int_{0}^{1} x \mathrm{f}(x) \mathrm{d} x=\int_{0}^{1}-3 x^{3}+4 x^{2} \mathrm{~d} x \quad$ attempt to integrate $x \mathrm{f}(x)$ | M1 |
|  | $=\left[\frac{-3 x^{4}}{4}+\frac{4 x^{3}}{3}\right]_{0}^{1}$ <br> sub in limits | M1 |
|  | $=\frac{7}{12}$ or $0.58 \dot{3}$ or 0.583 or equivalent fraction | A1 |
|  |  | (3) |
| (e) | $\frac{\mathrm{df}(x)}{\mathrm{d} x}=-6 x+4=0 \quad$ attempt to differentiate $\mathrm{f}(x)$ and equate to 0 | M1 |
|  | $x=\frac{2}{3} \text { or } 0 . \dot{6} \text { or } 0.667$ | A1 |
|  |  | (2) |
| (f) | mean $<$ median $<$ mode, therefore negative skew. Any pair, cao | B1,B1 |
|  |  | Total 14 |

## Mark Scheme (Results) Summer 2007

## GCE

## GCE Mathematics

## Statistics S2 (6684)

J une 2007
6684 Statistics S2
Mark Scheme


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 2 | ```One tail test Method 1 \(\mathrm{H}_{\mathrm{o}}: \lambda=5(\lambda=2.5)\) may use \(\lambda\) or \(\mu\) \(\mathrm{H}_{1}: \lambda>5(\lambda>2.5)\) \(X \sim \operatorname{Po}(2.5)\) may be implied```  ```(Reject \(\mathrm{H}_{0}\).) There is significant evidence at the \(5 \%\) significance level that the factory is polluting the river with bacteria. \(\frac{\text { or }}{\text { Th }}\) The scientists claim is justified``` | B1 <br> B1 <br> M1 <br> M1 <br> A1 <br> M1 <br> B1 <br> (7) <br> Total 7 |
|  |  | B1 <br> B1 <br> M1 <br> M1 A1 <br> M1 <br> B1 |






| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6 | One tail test <br> Method 1 <br> $\mathrm{H}_{\mathrm{o}}: \mathrm{p}=0.2$ $\mathrm{H}_{1}: \mathrm{p}>0.2$ $X \sim \mathrm{~B}(5,0.2)$ <br> may be implied $\begin{aligned} \mathrm{P}(X \geq 3) & =1-\mathrm{P}(X \leq 2) \\ & =1-0.9421 \\ & =0.0579 \\ 0.0579 & >0.05 \end{aligned}$ $\begin{array}{lr} {[\mathrm{P}(X \geq 3)=1-0.9421=0.0579]} & \text { att } \mathrm{P}(X \geq 3) \\ \mathrm{P}(X \geq 4)=1-0.9933=0.0067 & \\ \mathrm{CR} X \geq 4 & \text { awrt } 0.0579 \\ 3 \leq 4 \text { or } 3 \text { is not in critical region or } 3 \text { is not sighificant } \end{array}$ | B1 <br> B1 <br> M1 <br> M1 <br> A1 <br> M1 <br> B1 <br> (7) <br> Total 7 |
|  |  | B1 <br> B1 <br> M1 <br> M1A1 <br> M1 <br> B1 <br> (7) |





# Mark Scheme (Results) J anuary 2008 

## GCE

## GCE Mathematics (6684/ 01)

J anuary 2008
Statistics $\mathbf{S 2}$
Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. (a) <br> (b) <br> (c) <br> (d) | A census is when every member of the population is investigated. <br> There would be no cookers left to sell. <br> A list of the unique identification numbers of the cookers. <br> A cooker | B1 <br> B1 <br> B1 <br> B1 <br> (4) |
| Notes <br> 1. (a) <br> (b) <br> (c) <br> (d) | B1 Need one word from each group <br> (1) Every member /all items / entire /oe <br> (2) population/collection of individuals/sampling frame/oe <br> enumerating the population on its own gets B 0 <br> B1 Idea of Tests to destruction. Do not accept cheap or quick <br> B1 Idea of list/ register/database of cookers/serial numbers <br> B1 cooker(s) / serial number(s) <br> The sample of 5 cookers or every $400^{\text {th }}$ cooker gets B1 |  |




| (ii) | A1 awrt 0.134 <br> M1 Attempting to find $1-\mathrm{P}(X \leq 4)$ <br> A1 awrt 0.715 |  |
| :--- | :--- | :--- |
| (c) | B1 Attempting to find both possibilities. May be implied by doing $\mathrm{e}^{-\lambda_{1}} \times \lambda_{2} \mathrm{e}^{-\lambda_{2}}+$ <br> $\mathrm{e}^{-\lambda_{2}} \times \lambda_{1} \mathrm{e}^{-\lambda_{1}}$ any values of $\lambda_{1}$ and $\lambda_{2}$ <br> M1 finding one pair of form $\mathrm{e}^{-\lambda_{1}} \times \lambda_{2} \mathrm{e}^{-\lambda_{2}}$ <br> A1 one pair correct <br> A1 awrt 0.149 <br> Alternative. <br> B1 for Po(3) <br> M1 for attempting to find $\mathrm{P}(X=1)$ with $\operatorname{Po}(3)$ <br> A1 $3 \mathrm{e}^{-3}$ <br> A1 awrt 0.149 |  |



|  |  |  |
| :---: | :---: | :---: |
| 5 | $\mathrm{H}_{0}: p=0.3 ; \mathrm{H}_{1}: p>0.3$ <br> Let X represent the number of tomatoes greater than $4 \mathrm{~cm}: X \sim B(40,0.3)$ $\begin{aligned} \mathrm{P}(\mathrm{X} \geq 18) & =1-\mathrm{P}(\mathrm{X} \leq 17) \\ & =0.0320 \\ 0.0320 & <0.05 \end{aligned}$ $\begin{aligned} & \mathrm{P}(\mathrm{X} \geq 18) 1-\mathrm{P}(\mathrm{X} \leq 17)=0.0320 \\ & \mathrm{P}(X \geq 17)=1-\mathrm{P}(\mathrm{X} \leq 16)=0.0633 \\ & \quad \mathrm{CR} \mathrm{X} \geq 18 \end{aligned}$ <br> $18 \geq 18$ or 18 in the critical region <br> no evidence to Reject $\mathrm{H}_{0}$ or it is significant <br> New fertiliser has increased the probability of a tomato being greater than 4 cm Or <br> Dhriti's claim is true | B1 B1 <br> B1 <br> M1 <br> A1 <br> M1 <br> B1d cao |
| 5 | B1 for correct $\mathrm{H}_{0}$. must use p or pi <br> B1 for correct $\mathrm{H}_{1}$ must use p and be one tail. <br> B1 using $\mathrm{B}(40,0.3)$. This may be implied by their calculation <br> M1 attempt to find $1-\mathrm{P}(\mathrm{X} \leq 17)$ or get a correct probability. <br> For CR method must attempt to find $\mathrm{P}(\mathrm{X} \geq 18)$ or give the correct critical region <br> A1 awrt 0.032 or correct CR. <br> M1 correct statement based on their probability, $\mathrm{H}_{1}$ and 0.05 or a correct contextualised statement that implies that. <br> B1 this is not a follow through .conclusion in context. Must use the words increased, tomato and some reference to size or diameter. This is dependent on them getting the previous M1 <br> If they do a two tail test they may get <br> B1 B0 B1 M1 A1 M1 B0 <br> For the second M1 they must have accept Ho or it is not significant or a correct contextualised statement that implies that. |  |



|  | A1 award for either $\frac{7.5-10}{\sqrt{7.5}}$ or awrt -0.91 <br> A1 award for either $\frac{13.5-10}{\sqrt{7.5}}$ or awrt 1.28 <br> M1 Finding the correct area. Following on from their 7.5 and 13.5. Need to do a <br> Prob $>0.5-$ prob $<0.5$ or prob $<0.5+$ prob $<0.5$ <br> A1 awrt 0.718 or 0.719 only. Dependent on them getting all three method marks. <br> No working but correct answer will gain all the marks <br> first B1 normal <br> second B1 <br> p close to half, <br> or mean $\neq$ variance <br> or np and nq both $>5 . T h e y ~ m a y ~ u s e ~ a ~ n u m b e r ~ b i g g e r ~ t h a n ~$ <br> or they may work out the exact value 0.7148 using the binomial distribution. <br> Do not allow np $>5$ and npq $>5$ |  |
| :--- | :--- | :--- |


| 7 ai) | A hypothesis test is a mathematical procedure to examine a value of a population parameter proposed by the null hypothesis compared with an alternative hypothesis. | B1 |
| :---: | :---: | :---: |
| ii) | The critical region is the range of values or a test statistic or region where the test is significant that would lead to the rejection of $\mathrm{H}_{0}$. | $\begin{array}{ll}\text { B1g } \\ \text { B1h } \\ \\ & \\ & \text { (3) }\end{array}$ |
| (b) | Let X represent the number of incoming calls : $\mathrm{X} \sim \mathrm{Po}(9)$ | B1 |
|  | From table $\mathrm{P}(\mathrm{X} \geq 16)=0.0220$ | M1 A1 <br> A1 |
|  | $\mathrm{P}(\mathrm{x} \leq 3)=0.0212$ | B1 |
|  | Critical region ( $\mathrm{x} \leq 3$ or $\mathrm{x} \geq 16$ ) | (5) |
| (c) | $\begin{aligned} \text { Significance level } & =0.0220+0.0212 \\ & =0.0432 \text { or } 4.32 \% \end{aligned}$ | B1 <br> (1) |
| (d) |  | B1 |
|  | $\mathrm{H}_{0}: \lambda=0.45 ; \mathrm{H}_{1}: \lambda<0.45 \quad\left(\right.$ accept $\left.: \mathrm{H}_{0}: \lambda=4.5 ; \mathrm{H}_{1}: \lambda<4.5\right)$ | M1 |
|  | Using $X \sim \operatorname{Po}(4.5)$ | A1 |
|  | $\mathrm{P}(\mathrm{X} \leq 1)=0.0611 \quad \mathrm{CR} X \leq 0 \quad$ awrt 0.0611 | M1 |
|  | $0.0611>0.05 . \quad 1 \geq 0$ or 1 not in the critical region | B1cao |
|  | There is evidence to Accept $\mathrm{H}_{0}$ or it is not significant |  |
|  | There is no evidence that there are less calls during school holidays. |  |
| $\begin{aligned} & \text { Notes } \\ & 7 \text { ai) } \end{aligned}$ | B1 Method for deciding between 2 hypothesis. |  |
| ii) | B1 range of values. This may be implied by other words. Not region on its own B1 which lead you to reject $\mathrm{H}_{0}$ |  |




Notes 8.
(a)

B1 the graph must have a maximum of 2 which must be labelled
B1 the line must be between 2 and 3 with not other line drawn except patios. They can get this mark even if the patio cannot be seen.

B1 the line must be straight and the right shape.

B1 Only accept 3
(b)
(c)

A1 correct integration ignore limits
A1 accept $2 \frac{2}{3}$ or awrt 2.67 or $2 . \dot{6}$
M1 using $\int \mathrm{f}(x) \mathrm{d} x=0.5$
A1 $m^{2}-4 m+4=0.5$ oe
(d)

M1 attempting to solve quadratic.
A1 awrt 2.71 or $\frac{4+\sqrt{2}}{2}$ or $2+\frac{\sqrt{2}}{2}$ oe

First B1 for negative
Second B1 for mean $<$ median $<$ mode. Need all 3 or may explain using diagram.

# Mark Scheme (Results) June 2008 

## GCE

## GCE Mathematics (6684/ 01)

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1(a) | $\mathrm{E}(X)=5$ <br> $\operatorname{Var}(X)=\frac{1}{12}(10-0)^{2} \quad$ or attempt to use $\int \frac{x^{2}}{10} d x-\mu^{2}$ $=\frac{100}{12}=\frac{25}{3}=8 \frac{1}{3}=8 . \dot{3}$ <br> awrt 8.33 | B1 <br> M1 <br> A1 |
| (b) | $\mathrm{P}(X \leq 2)=(2-0) \times \frac{1}{10}=\frac{1}{5} \quad$ or $\frac{2}{10} \quad$ or 0.2 | M1 A1 <br> (2) |
| (c) | $\left(\frac{1}{5}\right)^{5}=0.00032 \text { or } \frac{1}{3125} \text { or } 3.2 \times 10^{-4} \text { o.e. }$ | M1 A1 <br> (2) |
| (d) | $\begin{aligned} & \mathrm{P}(\mathrm{X} \geq 8) \text { or } \mathrm{P}(X>8) \\ & \mathrm{P}(X \geq 8 \mid X \geq 5)=\frac{\mathrm{P}(\mathrm{X} \geq 8)}{\mathrm{P}(\mathrm{X} \geq 5)} \\ &=\frac{2 / 10}{5 / 10} \\ &=\frac{2}{f} \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \end{array}$ |
|  |  | A1 <br> (3) |
|  | alternative $\text { remaining time } \sim \mathrm{U}[0,5] \text { or } \mathrm{U}[5,10] \quad \mathrm{P}(\mathrm{X} \geq 3 \text { or } 8)=\frac{2}{5}$ | M1 M1 A1 <br> (Total 10) |
|  | Notes <br> (a) B1 cao <br> M1 using the correct formula $\frac{(a-b)^{2}}{12}$ and subst in 10 or 0 <br> or for an attempt at the integration they must increase the power of $x$ by 1 and subtract their $\mathrm{E}(X)$ squared. <br> Al cao <br> (b) M1 for $\mathrm{P}(X \leq 2)$ or $\mathrm{P}(X<2)$ <br> A1 cao <br> (c) M1 (their b) ${ }^{5}$. If the answer is incorrect we must see this. No need to check with your calculator <br> A1 cao <br> (d) writing $\mathrm{P}(X \geq 8)$ (may use $>$ sign). If they do not write $\mathrm{P}(X \geq 8)$ then it must be clear from their working that they are finding it. 0.2 on its own with no working gets M0 <br> M1 For attempting to use a correct conditional probability. |  |

## A1 $2 / 5$

Full marks for $2 / 5$ on its own with no incorrect working
Alternative
M1 for $\mathrm{P}(X \geq 3)$ or $\mathrm{P}(X \geq 8)$ may use $>$ sign
M1 using either $\mathrm{U}[0,5]$ or $\mathrm{U}[5,10]$
A1 $2 / 5$

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 2 | $\begin{aligned} & X \sim \mathrm{~B}(100,0.58) \\ & Y \sim \mathrm{~N}(58,24.36) \\ & {\left[\begin{array}{rl}  \\ {[\mathrm{P}(X>50)} & =\mathrm{P}(X \geq 51)] \\ & =\mathrm{P}\left(z \geq \pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)\right) \\ & =\mathrm{P}(\mathrm{z} \geq-1.52 \ldots) \\ & =0.9357 \end{array}\right.} \end{aligned}$ <br> using 50.5 or 51.5 or 49.5 or 48.5 <br> standardising $50.5,51,51.5,48.5,49,49.5$ and their $\mu$ and $\sigma$ for M 1 <br> alternative $\begin{aligned} & X \sim \mathrm{~B}(100,0.42) \\ & Y \sim \mathrm{~N}(42,24.36) \end{aligned}$ $\begin{aligned} {[\mathrm{P}(X<50)} & =\mathrm{P}(X \leq 49)] \\ & =\mathrm{P}\left(\mathrm{z} \leq \pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)\right) \\ & =\mathrm{P}(\mathrm{z} \leq 1.52 \ldots) \\ & =0.9357 \end{aligned}$ | B1 B1 B1 <br> M1 <br> M1 <br> A1 <br> A1 <br> (7) <br> B1 B1 B1 <br> M1 <br> M1 A1 <br> A1 <br> (Total 7) |
|  | Notes <br> The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, $24.36 \text { or } \sqrt{ } 24.36 \text { or } \sqrt{ } 24.4 \text { or awrt } 4.94 \text {. }$ <br> Otherwise <br> B1 normal <br> B1 58 or 42 <br> B1 24.36 <br> M1 using 50.5 or 51.5 or 49.5 or 48.5 . ignore the direction of the inequality. <br> M1 standardising $50.5,51,51.5,48.5,49,49.5$ and their $\mu$ and $\sigma$. They may use $\sqrt{ } 24$ or $\sqrt{ } 24.36$ or $\sqrt{ } 24.4$ or awrt 4.94 for $\sigma$ or the $\sqrt{ }$ of their variance. <br> A1 $\pm$ 1.52. may be awarded for $\pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e. <br> A1 awrt 0.936 |  |

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks <br>
\hline 3(a)

(b) \& \begin{tabular}{l}
$$
X \sim \operatorname{Po}(9)
$$ <br>
may be implied by calculations in part a or b
$$
\begin{aligned}
& \mathrm{P}(X \leq 3)=0.0212 \\
& \mathrm{P}(X \geq 16)=0.0220
\end{aligned}
$$
$$
\mathrm{CR} X \leq 3 ; \cup X \geq 16
$$
$$
\begin{aligned}
\mathrm{P}(\text { rejecting Ho }) & =0.0212+0.0220 \\
& =0.0432 \text { or } 0.0433
\end{aligned}
$$

 \& 

M1 <br>
A1; A1 <br>
(3) <br>
M1 <br>
A1 cao <br>
(2) <br>
Total 5
\end{tabular} <br>

\hline \& | Notes |
| :--- |
| (a) M1 for using Po (9) - other values you might see which imply Po (9) are 0.0550 , $0.0415,0.9780,0.9585,0.9889,0.0111,0.0062$ or may be assumed by at least one correct region. |
| A1 for $X \leq 3$ or $X<4$ condone c 1 or CR instead of $X$ |
| A1 for $X \geq 16$ or $X>15$ |
| They must identify the critical regions at the end and not just have them as part of their working. Do not accept $\mathrm{P}(X \leq 3)$ etc gets A0 |
| (b) if they use 0.0212 and 0.0220 they can gain these marks regardless of the critical regions in part a. If they have not got the correct numbers they must be adding the values for their critical regions.(both smaller than 0.05 ) You may need to look these up. The most common table values for lambda $=9$ are in this table |
| A1 awrt 0.0432 or 0.0433 |
| Special case |
| If you see $0.0432 / 0.0433$ and then they go and do something else with it eg $1-$ 0.0432 award M1 A0 | \& <br>

\hline
\end{tabular}



| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 5(a) | $X \sim \mathrm{~B}(15,0.5)$ | B1 B1 |
| (b) | $\begin{aligned} \mathrm{P}(X=8) & =\mathrm{P}(X \leq 8)-\mathrm{P}(X \leq 7) \quad \text { or }\left(\frac{15!}{8!7!}(p)^{8}(1-p)^{7}\right) \\ & =0.6964-0.5 \end{aligned}$ | M1 |
|  | $=0.1964 \quad \text { awrt } 0.196$ | A1 <br> (2) |
| (c) | $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$ | M1 |
|  | $=1-0.0176$ |  |
|  | $=0.9824$ | A1 |
|  |  | (2) |
| (d) | $\begin{aligned} & \mathrm{H}_{\mathrm{o}}: p=0.5 \\ & \mathrm{H}_{1}: p>0.5 \end{aligned}$ | B1 |
|  |  | B1 |
|  | $X \sim \mathrm{~B}(15,0.5)$ |  |
|  | $\mathrm{P}(X \geq 13)$ $=1-\mathrm{P}(X \leq 12)$ $[\mathrm{P}(X \geq 12)=1-0.9824=0.0176]$  <br>  $=1-0.9963$  $\mathrm{P}(X \geq 13)=1-0.9963=0.0037$$\quad$ att $\mathrm{P}(X \geq 13)$ | M1 |
|  | $=0.0037$ CR $X \geq 13$ | A1 |
|  | $0.0037<0.01$ $13 \geq 13$ |  |
|  | Reject $\mathrm{H}_{0}$ or it is significant or a correct statement in context from their values | M1 |
|  | There is sufficient evidence at the $1 \%$ significance level that the coin is biased in favour of heads | A1 (6) |
|  | Or <br> There is evidence that Sues belief is correct |  |
|  | Notes |  |
|  | (a) B1 for Binomial <br> B1 for 15 and 0.5 must be in part a This need not be in the form written |  |
|  |  |  |
|  |  |  |
|  | (b) MI attempt to find $\mathrm{P}(X=8)$ any method. Any value of $p$ <br> A1 awrt 0.196 <br> Answer only full marks |  |
|  |  |  |
|  | (c) M1 for $1-\mathrm{P}(X \leq 3)$. A1 awrt 0.982 |  |

(d) B1 for correct $\mathrm{H}_{0}$. must use p or $\pi$

B1 for correct $\mathrm{H}_{1}$ must be one tail must use p or $\pi$
M1 attempt to find $\mathrm{P}(X \geq 13)$ correctly. E.g. $1-\mathrm{P}(X \leq 12)$
A1 correct probability or CR
To get the next 2 marks the null hypothesis must state or imply that $(p)=0.5$
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.

A1 This depends on their M1 being awarded for rejecting $\mathrm{H}_{0}$. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct .
NB this is a B mark on EPEN.

They may also attempt to find $\mathrm{P}(X<13)=0.9963$ and compare with 0.99

(ii) M1 for $1-\mathrm{P}(X \leq 8)$

A1 only awrt 0.0403
(c) B1 both. Must be one tail test. They may use $\lambda$ or $\mu$ and either 9 or 18 and match $\mathrm{H}_{0}$ and $\mathrm{H}_{1}$

M1 Po (9) may be implied by them using it in their calculations.
M1 attempt to find $\mathrm{P}(X \geq 14)$ eg $1-\mathrm{P}(X \leq 13)$ or $1-\mathrm{P}(X<14)$
A1 correct probability or CR

To get the next2 marks the null hypothesis must state or imply that $(\lambda)=9$ or 18
M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.

A1. This depends on their M1 being awarded for accepting $\mathrm{H}_{0}$. Conclusion in context. Must have calls per hour has not increased. Or the rate of calls has not increased.
Any statement that has the word calls in and implies the rate not increasing e.g. no evidence that the rate of calls handled has increased

Saying the number of calls has not increased gains A0 as it does not imply rate NB this is an A mark on EPEN

They may also attempt to find $\mathrm{P}(X<14)=0.9261$ and compare with 0.95



M1 $\int_{0}^{1} \frac{1}{2} t \mathrm{dt}+\quad$ Att to integrate using limits 0 and 1 . no need to see them put 0 in .
they must add this to their $\int_{1}^{x} \frac{1}{5} t^{3} \mathrm{dt}$. may be given if they add $1 / 4$
(Alternative method for these last two M marks )
M1 for att to $\int \frac{1}{5} \boldsymbol{t}^{3}$ dt and putting +C
M1 use of $F(2)=1$ to find $C$

A1 $\frac{1}{20} x^{4}+\frac{1}{5}$ must be correct
B1 middle pair followed through from their answers. condone them using $<$ or <incorrectly they do not need to match up

B1 end pairs. condone them using $<$ or $\leq$. They do not need to match up
NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0<x<1$ is correct they can get M1 A1 otherwise M0 A0. if $3<x<4$ is correct they can get M1 A1A1 otherwise M0 A0A0. you cannot award B1 ft if they show no working unless the middle parts are correct.
(d) M1 either of their $\frac{1}{4} x^{2}$ or $\frac{1}{20} x^{4}+\frac{1}{5}=0.5$

A1 for their $\mathrm{F}(X) 1<x<2=0.5$
A1 cao
If they add both their parts together and put $=0.5$ they get M0
I they work out both parts separately and do not make the answer clear they can get M1 A1 A0
(e) B1 negative skew only

B1 Dependent on getting the previous B1. their reason must follow through from their figures.

# Mark Scheme (Results) J anuary 2009 

GCE

GCE Mathematics (6684/ 01)

## J anuary 2009 <br> 6684 Statistics S2 <br> Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| $1 \begin{gathered} \\ \\ \\ \\ \\ \\ \text { (b) } \\ \\ \\ \text { (c) } \\ \\ \text { (d) } \\ \text { (e) }\end{gathered}$ | The random variable $X$ is the number of daisies in a square. Poisson(3) | B1 |
|  | $\begin{aligned} 1-\mathrm{P}(X \leq 2) & =1-0.4232 \quad 1-\mathrm{e}^{-3}\left(1+3+\frac{3^{2}}{2!}\right) \\ & =0.5768 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
|  | $\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 4)=0.9665-0.8153 \quad \mathrm{e}^{-3}\left(\frac{3^{5}}{5!}+\frac{3^{6}}{6!}\right)$ | M1 |
|  | $=0.1512$ | A1 |
|  | $\mu=3.69$ | B1 |
|  | $\begin{aligned} \operatorname{Var}(X) & =\frac{1386}{80}-\left(\frac{295}{80}\right)^{2} \\ & =3.73 / 3.72 / 3.71 \end{aligned}$ <br> accept $\mathrm{s}^{2}=3.77$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ |
|  | For a Poisson model , Mean = Variance ; For these data $3.69 \approx 3.73$ $\Rightarrow$ Poisson model | B1 |
|  | $\frac{\mathrm{e}^{-3.6875} 3.6875^{4}}{4!}=0.193$ <br> allow their mean or var | M1 |
|  | Awrt 0.193 or 0.194 | A1 ft (2) |



| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3 (a) | $\begin{aligned} & X \sim \mathrm{~B}(20,0.3) \\ & \mathrm{P}(X \leq 2)=0.0355 \end{aligned}$ $\mathrm{P}(X \geq 11)=1-0.9829=0.0171$ | M1 |
|  | Critical region is $(X \leq 2) \cup(X \geq 11)$ | A1 A1 <br> (3) |
| (b) | Significance level $=0.0355+0.0171,=0.0526$ or $5.26 \%$ | M1 A1 (2) |
| (c) | Insufficient evidence to reject $\mathrm{H}_{0}$ Or sufficient evidence to accept $\mathrm{H}_{0} /$ not significant <br> $x=3$ ( or the value) is not in the critical region or $0.1071>0.025$ <br> Do not allow inconsistent comments | B1 ft <br> B1 ft <br> (2) |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4 <br> (a) <br> (b) <br> (c) | $\begin{aligned} \int_{0}^{10} k t d t & =1 & \text { or Area of triangle }=1 \\ {\left[\frac{k t^{2}}{2}\right]_{0}^{10} } & =1 & \text { or } 10 \times 0.5 \times 10 \mathrm{k}=1 \text { or linear equation in } \mathrm{k} \\ 50 k & =1 & \text { cso } \end{aligned}$ | M1 <br> M1 <br> A1 |
|  | $\begin{aligned} \int_{6}^{10} k t d t & =\left[\frac{\mathrm{kt}^{2}}{2}\right]_{6}^{10} \\ & =\frac{16}{25} \end{aligned}$ | M1 <br> A1 |
|  | $\begin{aligned} \mathrm{E}(T)=\int_{0}^{10} k t^{2} d t & =\left[\frac{\mathrm{kt}^{3}}{3}\right]_{0}^{10} \\ & =6 \frac{2}{3} \end{aligned}$ | M1 <br> A1 |
|  | $\begin{aligned} \operatorname{Var}(\mathrm{T})=\int_{0}^{10} k t^{3} d t-\left(6 \frac{2}{3}\right)^{2} & =\left[\frac{k t^{4}}{4}\right]_{0}^{10} ;-\left(6 \frac{2}{3}\right)^{2} \\ & =50-\left(6 \frac{2}{3}\right)^{2} \\ & =5 \frac{5}{5} \end{aligned}$ | M1;M1dep |
|  | 10 | B1 (5) |
| (e) |  | B1 |
|  |  |  |
|  |  | (1) |



| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6 (a)(i) | $\mathrm{H}_{0}: \lambda=7 \quad \mathrm{H}_{1}: \lambda>7$ | B1 |
|  | $X=$ number of visits. $X \sim \operatorname{Po}(7)$ | B1 |
|  | $\begin{aligned} \mathrm{P}(X \geq 10) & =1-\mathrm{P}(X \leq 9) & & 1-\mathrm{P}(X \leq 10)=0.0985 \\ & =0.1695 & & 1-\mathrm{P}(X \leq 9)=0.1695 \end{aligned}$ | M1 |
|  | CR $X \geq 11$ | A1 |
|  | $0.1695>0.10$, $\mathrm{CR} X \geq 11$ <br> Not significant or it is not in the critical region or do not reject $\mathrm{H}_{0}$ The rate of visits on a Saturday is not greater/ is unchanged | M1 <br> Al no ft |
|  | $X=11$ | B1 |
|  | (The visits occur) randomly/ independently or singly or constant rate | B1 |
|  | $\left[\mathrm{H}_{0}: \lambda=7 \quad \mathrm{H}_{1}: \lambda>7 \quad\left(\begin{array}{l}\text { or } \mathrm{H}_{0}: \lambda=14\end{array}\right.\right.$ |  |
|  | $X \sim \mathrm{~N} ;(14,14)$ | B1; B1 |
|  | $\begin{aligned} \mathrm{P}(\mathrm{X} \geq 20) & =\mathrm{P}\left(\mathrm{z} \geq \frac{19.5-14}{\sqrt{14}}\right) \\ & =\mathrm{P}(\mathrm{z} \geq 1.47) \\ & =0.0708 \quad \text { or } \mathrm{z}=1.2816 \end{aligned}$ <br> $+/-0.5$, stand | M1 M1 <br> Aldep both M |
|  | $0.0708<0.10$ therefore significant. The rate of visits is greater on a Saturday | Aldep $2^{\text {nd }} M$ <br> (6) |



## Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6684/ 01)

J une 2009
6684 Statistics S2
Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q1 (a) <br> (b) | $[X \sim \mathrm{~B}(30,0.15)]$  <br> $\mathrm{P}(X \leq 6),=0.8474$ awrt 0.847 <br> $Y \sim \mathrm{~B}(60,0.15) \approx \operatorname{Po}(9)$ for using $\operatorname{Po}(9)$ <br> $\mathrm{P}(Y \leq 12),=0.8758$ awrt 0.876 <br> [ N.B. normal approximation gives 0.897 , exact binomial gives 0.894 ] | M1, A1 (2) <br> B1 M1, A1 (3) |
| (a) (b) | M1 for a correct probability statement $\mathrm{P}(X \leq 6)$ or $\mathrm{P}(X<7)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\mathrm{P}(X=2)+\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74\% <br> B1 may be implied by using $\operatorname{Po}(9)$. Common incorrect answer which implies this is 0.9261 <br> M1 for a correct probability statement $\mathrm{P}(X \leq 12)$ or $\mathrm{P}(X<13)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\ldots+\mathrm{P}(X=12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution. <br> Condone $\mathrm{P}(X \leq 13)=0.8758$ for B 1 M 1 A 1 <br> Correct answer gets B1 M1 A1 <br> Use of normal or exact binomial get B0 M0 A0 |  |

## edexcel

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q2 | $\begin{aligned} & \mathrm{H}_{0}: \lambda=2.5(\text { or } \lambda=5) \quad \mathrm{H} 1: \lambda<2.5(\text { or } \lambda<5) \\ & X \sim \operatorname{Po}(5) \\ & \mathrm{P}(X \leq 1)=0.0404 \quad \text { or } \quad \mathrm{CR} X \leq 1 \end{aligned}$ <br> [0.0404<0.05] this is significant or reject $\mathrm{H}_{0}$ or it is in the critical region <br> There is evidence of a decrease in the (mean) number/rate of deformed blood cells | B1B1  <br> M1  <br> A1  <br>   <br> M1  <br>   <br> A1 (6) <br>  $[6]$ |
|  | $1^{\text {st }} \mathrm{B} 1$ for $\mathrm{H}_{0}$ must use lambda or mu; 5 or 2.5 . <br> $2^{\text {nd }} \mathrm{B} 1$ for $\mathrm{H}_{1}$ must use lambda or mu; 5 or 2.5 <br> $1^{\text {st }}$ M1 for use of $\operatorname{Po}(5)$ may be implied by probability (must be used not just seen) <br> eg. $\mathrm{P}(X=1)=0.0404-\ldots$ would score M1 A0 <br> $1^{\text {st }} \mathrm{A} 1$ for 0.0404 seen or correct CR <br> $2^{\text {nd }}$ M1 for a correct statement (this may be contextual) comparing their probability and 0.05 (or comparing 1 with their critical region). Do not allow conflicting statements. <br> $2^{\text {nd }} \mathrm{A} 1$ is not a follow through. Need the word decrease, number or rate and deformed blood cells for contextual mark. <br> If they have used $\neq$ in $\mathrm{H}_{1}$ they could get B1 B0 M1 A1 M1A0 <br> mark as above except they gain the <br> $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(X \leq 1)=0.0404$ or $\mathrm{CR} X \leq 0$ <br> $2^{\text {nd }}$ M1 for a correct statement (this may be contextual) comparing their probability and 0.025 (or comparing 1 with their critical region) <br> They may compare with 0.95 (one tail method) or 0.975 (one tail method) Probability is 0.9596 . |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q3 (a) <br> (b) <br> (c) | A statistic is a function of $X_{1}, X_{2}, \ldots X_{n}$ that does not contain any unknown parameters <br> The probability distribution of $Y$ or the distribution of all possible values of $Y$ (o.e.) <br> Identify (ii) as not a statistic <br> Since it contains unknown parameters $\mu$ and $\sigma$. | B1  <br> B1 (2) <br> B1 $(1)$ <br> B1  <br> dB1 $(2)$ <br>  $[5]$ |
| (a) (b) (b) (c) | Examples of other acceptable wording: <br> B1 e.g. is a function of the sample or the data / is a quantity calculated from the sample or the data / is a random variable calculated from the sample or the data <br> B1 e.g. does not contain any unknown parameters/quantities contains only known parameters/quantities only contains values of the sample <br> $Y$ is a function of $X_{1}, X_{2}, \ldots X_{n}$ that does not contain any unknown parameters is a function of the values of a sample with no unknowns is a function of the sample values is a function of all the data values <br> A random variable calculated from the sample <br> A random variable consisting of any function <br> A function of a value of the sample <br> A function of the sample which contains no other values/ parameters <br> Examples of other acceptable wording <br> All possible values of the statistic together with their associated probabilities <br> $1^{\text {st }}$ B1 for selecting only (ii) <br> $2^{\text {nd }}$ B1 for a reason. This is dependent upon the first B1. Need to mention at least one of mu (mean) or sigma (standard deviation or variance) or unknown parameters. <br> Examples <br> since it contains mu B1 <br> since it contains sigma B1 <br> since it contains unknown parameters/quantities B1 <br> since it contains unknowns B0 |  |

## edexcel

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q4 (a) \& \begin{tabular}{l}
\[
X \sim \mathrm{~B}(20,0.3)
\]
\[
\mathrm{P}(X \leq 2)=0.0355
\]
\[
\mathrm{P}(X \leq 9)=0.9520 \quad \text { so }
\]
\[
\text { Therefore the critical region is }\{X \leq 2\} \cup\{X \geq 10\}
\]
\[
0.0355+0.0480=0.0835
\] \\
awrt ( 0.083 or 0.084 ) \\
11 is in the critical region \\
there is evidence of a change/ increase in the proportion/number of customers buying single tins
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1A1 \\
(5) \\
B1 \\
(1) \\
B1ft \\
B1ft \\
(2) \\
[8]
\end{tabular} \\
\hline (a)

(b)

(c) \& | M1 for $\mathrm{B}(20,0.3)$ seen or used |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for 0.0355 |
| $2^{\text {nd }}$ A1 for 0.048 |
| $3^{\text {rd }} \mathrm{A} 1$ for $(X) \leq 2$ or $(X)<3$ or [0,2] They get A0 if they write $\mathrm{P}(X \leq 2 / X<3)$ |
| $4^{\text {th }} \mathrm{A} 1(X) \geq 10$ or $(X)>9$ or [10,20] They get A0 if they write $\mathrm{P}(X \geq 10 / X>9)$ |
| $\mathbf{1 0} \leq X \leq 2$ etc is accepted |
| To describe the critical regions they can use any letter or no letter at all. It does not have to be $X$. |
| B1 correct answer only |
| $1^{\text {st }} \mathrm{B} 1$ for a correct statement about 11 and their critical region. |
| $2^{\text {nd }} \mathrm{B} 1$ for a correct comment in context consistent with their CR and the value 11 |
| Alternative solution |
| $1^{\text {st }} \mathrm{B} 0 \quad P(X \geq 11)=1-0.9829=0.0171$ since no comment about the critical region |
| $2^{\text {nd }} \mathrm{B} 1$ a correct contextual statement. | \& <br>

\hline
\end{tabular}

| Question Number | Scheme ${ }^{\text {arks }}$ |
| :---: | :---: |
| Q5 (a) |  |
| (a) SC (b) | B1 for seeing or using $\operatorname{Po}(6)$ <br> M1 for $1-\mathrm{P}(X \leq 3)$ or $1-[\mathrm{P}(X=0)+\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)]$ <br> A1 awrt 0.849 <br> If $\mathrm{B}(2000,0.003)$ is used and leads to awrt 0.849 allow B0 M1 A1 <br> If no distribution indicated awrt 0.8488 scores B1M1A1 but any other awrt 0.849 scores B0M1A1 <br> $1^{\text {st }}$ M1 for identifying the normal approximation <br> $1^{\text {st }} \mathrm{A} 1$ for [mean $\left.=24\right]$ and $[\mathrm{sd}=\sqrt{24}$ or var $=24]$ <br> These first two marks may be given if the following are seen in the standardisation formula : 24 $\sqrt{24} \text { or awrt } 4.90$ <br> $2^{\text {nd }} \mathrm{M} 1$ for attempting a continuity correction ( $20 / 28 \pm 0.5$ is acceptable) <br> $3{ }^{\text {rd }} \mathrm{M} 1$ for standardising using their mean and their standard deviation. <br> $2^{\text {nd }} \mathrm{A} 1$ correct z value awrt $\pm 0.71$ or this may be awarded if see $\frac{20.5-24}{\sqrt{24}}$ or $\frac{27.5-24}{\sqrt{24}}$ <br> $4^{\text {th }}$ M1 for $1-$ a probability from tables (must have an answer of $<0.5$ ) <br> $3^{\text {rd }} \mathrm{A} 1$ answer awrt 3 sig fig in range $0.237-0.239$ |



| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q7 | $\mathrm{E}(X)=2 \quad$ (by symmetry) | B1 (1) |
|  | $0 \leq x<2$, gradient $=\frac{\frac{1}{2}}{2}=\frac{1}{4}$ and equation is $y=\frac{1}{4} x$ so $a=\frac{1}{4}$ | B1 |
|  | $b-\frac{1}{4} x$ passes through $(4,0)$ so $b=$ | B1 (2) |
|  | $\mathrm{E}\left(X^{2}\right)=\int_{0}^{2}\left(\frac{1}{4} x^{3}\right) \mathrm{d} x+\int_{2}^{4}\left(x^{2}-\frac{1}{4} x^{3}\right) \mathrm{d} x$ | M1M1 |
|  | $=\left[\frac{x^{4}}{16}\right]_{0}^{2}+\left[\frac{x^{3}}{3}-\frac{x^{4}}{16}\right]_{2}^{4}$ | A1 |
|  | $=1+\underline{64-8}-256-16$ | M1A1 |
|  | $\begin{equation*} \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\frac{14}{3}-2^{2},=\frac{2}{3} \quad\left(\text { so } \sigma=\sqrt{\frac{2}{3}}=0.816\right) \tag{*} \end{equation*}$ | M1 <br> Alcso <br> (7) |
|  | $\mathrm{P}(X \leq q)=\int_{0}^{q} \frac{1}{4} x \mathrm{~d} x=\frac{1}{4}, \quad \frac{q^{2}}{2}=1$ so $q=\sqrt{2}=1.414$ <br> awrt 1.41 | M1A1,A1 <br> (3) |
|  | 2- $\sigma=1.184$ so $2-\sigma, 2+\sigma$ is wider than IQR, therefore greater than 0.5 | $\begin{array}{lc} \text { M1,A1 } & (2) \\ & {[15]} \\ \hline \end{array}$ |

(a) B1 cao
(b) B 1 for value of $a . \mathrm{B} 1$ for value of $b$
(c) $1^{\text {st }} \mathrm{M} 1 \quad$ for attempt at $\int a x^{3}$ using their $a$. For attempt they need $x^{4}$. Ignore limits.
$2^{\text {nd }}$ M1 for attempt at $\int b x^{2}-a x^{3}$ use their $a$ and $b$. For attempt need to have either $x^{3}$ or $x^{4}$. Ignore limits
$1^{\text {st }}$ A1 correct integration for both parts
$3^{\text {rd }}$ M1 for use of the correct limits on each part
$2^{\text {nd }}$ A1 for either getting 1 and $3 \frac{2}{3}$ or awrt 3.67 somewhere or $4 \frac{2}{3}$ or awrt 4.67
$4^{\text {th }}$ M1 for use of $\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$ must add both parts for $\mathrm{E}\left(X^{2}\right)$ and only have subtracted the mean $^{2}$ once. You must see this working
(d)
$3^{\text {rd }} \mathrm{A} 1 \sigma=\sqrt{\frac{2}{3}}$ or $\sqrt{0.66667}$ or better with no incorrect working seen.
M1 for attempting to find $L Q$, integral of either part of $f(x)$ with their ' $a$ ' and ' $b$ ' $=0.25$
Or their $\mathrm{F}(x)=0.25$ i.e. $\frac{a x^{2}}{2}=0.25$ or $b x-\frac{a x^{2}}{2}+4 a-2 b=0.25$ with their $a$ and $b$
If they add both parts of their $\mathrm{F}(x)$, then they will get M0.
$1^{\text {st }} \mathrm{A} 1$ for a correct equation/expression using their ' $a$ '
(e) $2^{\text {nd }} \mathrm{A} 1$ for $\sqrt{2}$ or awrt 1.41

M1 for a reason based on their quartiles

- Possible reasons are $\mathrm{P}(2-\sigma<X<2+\sigma)=0.6498$ allow awrt 0.65
- $\quad 1.184<\mathrm{LQ}(1.414)$

A1 for correct answer $>0.5$
NB you must check the reason and award the method mark. A correct answer without a correct reason gets M0 A0

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q8 (a) | $\begin{equation*} X \sim \operatorname{Po}(2) \quad \mathrm{P}(X=4)=\frac{\mathrm{e}^{-2} \times 2^{4}}{4!}=0.0902 \quad \text { awrt } 0.09 \tag{2} \end{equation*}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
| (b) | $\begin{align*} & Y \sim \operatorname{Po}(8)  \tag{3}\\ & \mathrm{P}(Y>10)=1-\mathrm{P}(Y \leq 10)=1-0.8159=0.18411 \ldots \quad \text { awrt } 0.184 \end{align*}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1A1 } \end{aligned}$ |
| (c) | $F=$ no. of faults in a piece of cloth of length $x \quad F \sim \operatorname{Po}\left(x \times \frac{2}{15}\right)$ |  |
|  | $\begin{gathered} \mathrm{e}^{-\frac{2 x}{15}}=0.80 \\ \mathrm{e}^{-\frac{2}{15} \times 1.65}=0.8025 \ldots, \quad \mathrm{e}^{-\frac{2}{15} \times 1.75}=0.791 \ldots \end{gathered}$ | M1A1 <br> M1 |
|  | These values are either side of 0.80 therefore $x=1.7$ to 2 sf |  |
| (d) | Expected number with no faults $=1200 \times 0.8=960$ <br> Expected number with some faults $=1200 \times 0.2=240$ | M1 <br> A1 <br> M1, A1 <br> (4) |
|  |  | [13] |
| (a) | M1 for use of $\mathrm{Po}(2)$ may be implied <br> A1 awrt 0.09 |  |
| (b) | B1 for $\mathrm{Po}(8)$ seen or used <br> M1 for $1-\mathrm{P}(Y \leq 10)$ oe <br> A1 awrt 0.184 |  |
| (c) | $1^{\text {st }} \mathrm{M} 1$ for forming a suitable Poisson distribution of the form $\mathrm{e}^{-\lambda}=0.8$ $1^{\text {st }} \mathrm{A} 1$ for use of lambda as $\frac{2 x}{15}$ (this may appear after taking logs) <br> $2^{\text {nd }} \mathrm{M} 1$ for attempt to consider a range of values that will prove 1.7 is correct $\mathbf{O R}$ for use of logs to show lambda $=\ldots$ <br> $2^{\text {nd }}$ A1 correct solution only. Either get 1.7 from using logs or stating values either side |  |
| S.C | for $\mathrm{e}^{-\frac{2}{15} \times 1.7}=0.797 \ldots \approx 0.80 \quad \therefore x=1.7$ to 2 sf allow $2^{\text {nd }} \mathrm{M} 1 \mathrm{~A} 0$ |  |
| (d) | $1^{\text {st }} \mathrm{M} 1$ for one of the following 1200 p or $1200(1-\mathrm{p})$ where $\mathrm{p}=0.8$ or $2 / 15$. <br> $1^{\text {st }} \mathrm{A} 1$ for both expected values being correct or two correct expressions. <br> $2^{\text {nd }} \mathrm{M} 1$ for an attempt to find expected profit, must consider with and without faults <br> $2^{\text {nd }}$ A1 correct answer only. |  |

## Mark Scheme (Results) J anuary 2010

## GCE

## Statistics S2 (6684)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2010
Publications Code UA023029
All the material in this publication is copyright
© Edexcel Ltd 2010

J anuary 2010
6684 Statistics S2
Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q1 (a) <br> (b) <br> (c) <br> (d) | $\begin{align*} & X \sim B(20,0.05)  \tag{2}\\ & \mathrm{P}(\mathrm{X}=0)=0.95^{20}=0.3584859 \ldots \text { or } 0.3585 \text { using tables } \\ & \begin{aligned} \mathrm{P}(X>4) \quad & =1-\mathrm{P}(X \leq 4) \\ & =1-0.9974 \\ & =0.0026 \end{aligned} \end{align*}$ <br> Mean $=20 \times 0.05=1$ <br> Variance $=20 \times 0.05 \times 0.95=0.95$ | B1 B1 <br> M1 A1 <br> (2) <br> M1 <br> A1 <br> (2) <br> B1 <br> B1 <br> (2) <br> Total [8] |
| Q1 (a) <br> (b) <br> (c) <br> (d) | Notes <br> $\mathbf{1}^{\text {st }} \mathbf{B 1}$ for binomial <br> $2^{\text {nd }} \mathbf{B 1}$ for 20 and 0.05 o.e <br> These must be in part (a) <br> M1 for finding $(p)^{20} \quad 0<p<1 \quad$ this working needs to be seen if answer incorrect to gain the M1 <br> A1 awrt 0.358 or 0.359 . <br> M1 for writing $1-\mathrm{P}(X \leq 4)$ <br> or $1-[\mathrm{P}(X=0)+\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)+\mathrm{P}(X=4)]$ <br> or $1-0.9974$ <br> or $1-0.9568$ <br> A1 awrt 0.0026 or $2.6 \times 10^{-3}$, do not accept a fraction e.g. 26/10000 <br> $\mathbf{1}^{\text {st }} \mathbf{B 1}$ for 1 <br> $2^{\text {nd }} \mathbf{B 1}$ for 0.95 <br> NB In parts $b, c$ and $d$ correct answers with no working gain full marks |  |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q2 (a) | $\mathrm{P}(X<0) \quad=\mathrm{F}(0)$ | M1 |
|  | $=\frac{2}{6}=\frac{1}{3}$ | A1 <br> (2) |
|  | $\mathrm{f}(x)=\frac{\mathrm{dF}(x)}{\mathrm{d} x}$ | M1 |
|  | $\mathrm{f}(x)=\left\{\begin{array}{cc} \frac{1}{6} & -2 \leq x \leq 4 \\ 0 & \text { otherwise } \end{array}\right.$ | $\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~B} 1 \end{aligned}$ |
|  |  | (3) |
|  | Continuous Uniform (Rectangular) distribution | B1 |
|  | Mean $=1$ | B1 |
|  | Variance is $\frac{(4--2)^{2}}{12}=3$ | M1 A1 <br> (3) |
|  | $\mathrm{P}(X=1)=0$ | B1 (1) |
|  |  | Total [10] |
| Q2 ${ }^{(a)}$ | Notes |  |
|  | M1 for attempting to find $\mathrm{F}(0)$ by a correct method eg subst 0 into $\mathrm{F}(x)$ or $\int_{-2}^{0} \frac{1}{6} d x$ Do NOT award M1 for $\int_{-2}^{0} \frac{x+2}{6} d x$ or $\frac{1}{2} \times \frac{1}{3} \times 2$ both of which give the correct answer by using $\mathrm{F}(x)$ as the pdf <br> A1 $1 / 3$ o.e or awrt 0.333 <br> Correct answer only with no incorrect working gets M1 A1 |  |
|  | M1 for attempting to differentiate $\mathrm{F}(x)$. (for attempt it must have no $x \mathrm{~s}$ in) A1 for the first line. Condone $<$ signs B1 for the second line. - They must have $0 x<-2$ and $x>4$ only. |  |
|  | B1 must have "continuous" and "uniform" or "Rectangular" |  |
|  | B1 for mean = 1 |  |
|  | M1 for attempt to use $\frac{[ \pm(b-a)]^{2}}{12}$, they must subst in values and not just quote the formula, or using $\int_{-2}^{4} x^{2}($ their $f(x))-(\text { their mean })^{2}$, including limits. Must get $x^{3}$ when they integrate. <br> A1 cao . |  |
|  | B1 cao |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q3 (a) | $Y \sim \operatorname{Po}(0.25)$ | B1 |
|  | $\begin{align*} \mathrm{P}(Y=0) & =\mathrm{e}^{-0.25} \\ & =0.7788 \tag{3} \end{align*}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
|  | $X \sim \operatorname{Po}(0.4)$ | B1 |
|  | $\mathrm{P}($ Robot will break down $) \quad=1-\mathrm{P}(X=0)$ |  |
|  | $=1-e^{-0.4}$ | M1 |
|  | $=1-0.067032$ |  |
|  | $=0.3297$ | A1 (3) |
|  | $\mathrm{P}(X=2) \quad=\underline{e^{-0.4}(0.4)^{2}}$ | M1 |
|  | $\begin{array}{r} 2 \\ =0.0536 \end{array}$ | A1 |
|  |  | (2) |
|  | 0.3297 or answer to part (b) <br> as Poisson events are independent | B1ft <br> B1 dep |
|  |  | (2) |
|  |  | Total [10] |
| Q3 | Notes |  |
|  | B1 for seeing or using $\operatorname{Po}(0.25)$ |  |
|  | M1 for finding $\mathrm{P}(Y=0)$ either by $\mathrm{e}^{-a}$, where $a$ is positive ( $a$ needn't equal their $\lambda$ ) or using tables if their value of $\lambda$ is in them <br> Beware common Binomial error using, $p=0.05$ gives 0.7738 but scores B0 M0 A0 A1 awrt 0.779 |  |
|  | B1 for stating or a clear use of $\operatorname{Po}(0.4)$ in part (b) or (c) |  |
|  | M1 for writing or finding $1-\mathrm{P}(X=0)$ <br> A1 awrt 0.33 |  |
|  | M1 for finding $\mathrm{P}(X=2)$ e.g $\frac{\mathrm{e}^{-\lambda} \lambda^{2}}{2!}$ with their value of $\lambda$ in or if their $\lambda$ is in the table for writing $\mathrm{P}(X \leq 2)-\mathrm{P}(X \leq 1)$ |  |
|  | A1 awrt 0.0536 |  |
|  | $\mathbf{1}^{\text {st }} \mathbf{B 1}$ their answer to part(b) correct to 2 sf or awrt 0.33 <br> $2^{\text {nd }} \mathbf{B 1}$ need the word independent. This is dependent on them gaining the first B1 SC |  |
|  | Use of Binomial. |  |
|  | Mark parts a and b as scheme. They could get (a) B0,M0,A0 (b) B0 M1 A0 In part $\mathbf{c}$ allow $\mathrm{M1}$ for ${ }^{n} C_{2}(p)^{2}(1-p)^{n-2}$ with "their $n$ " and "their $p$ ". They could get (c) DO NOT GIVE for $p(x \leq 2)-p(x \leq 1)$ <br> In (d) they can get the first B1 only. They could get (d) B1B0 | M1,A0 |



## Notes

$\mathbf{1}^{\text {st }}$ M1 attempting to integrate at least one part (at least one $x^{n} \rightarrow x^{n+1}$ ) (ignore limits)
$\mathbf{1}^{\text {st }}$ A1 Correct integration. Limits not needed.
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$ dependent on the previous M being awarded. Adding the two answers together, putting equal to 1 and have the correct limits.
$2^{\text {nd }}$ A1 cso
(b)
$\mathbf{1}^{\text {st }} \mathbf{M 1}$ Att to integrate $\frac{1}{9}\left(t^{2}-2 t+2\right)$ (at least one $\left.x^{n} \rightarrow x^{n+1}\right)$. Ignore limits for method mark
$\mathbf{1}^{\text {st }}$ A1 $\frac{1}{9}\left(\frac{x^{3}}{3}-x^{2}+2 x\right)$ allow use of $t$. Must have used/implied use of limit of 0 . This must be on its own without anything else added
$2^{\text {nd }} \mathbf{M} 1$ attempting to find $\int_{3}^{x} 3 k+\ldots$ (must get $3 k t$ or $3 k x$ )
and they must use the correct limits and add $\int_{0}^{3} \frac{1}{9}\left(t^{2}-2 t+2\right)$ or $\frac{2}{3}$
or use +C and use $\mathrm{F}(4)=1$
$2^{\text {nd }}$ A1 $\frac{x}{3}-\frac{1}{3} \quad$ must be correct
$\mathbf{1}^{\text {st }} \mathbf{B 1}$ middle pair followed through from their answers. condone them using $<$ or $\leq$ incorrectly they do not need to match up
$2^{\text {nd }} \mathbf{B 1}$ end pairs. condone them using $<$ or $\leq$. They do not need to match up
NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0<x \leq 3$ is correct they can get M1 A1 otherwise M0 A 0 . If $3<x \leq 4$ is correct they can get M1 A1 otherwise M0 A0. you cannot award B1ft if they show no working unless the middle parts are correct.
$\mathbf{1}^{\text {st }}$ M1 attempting to use integral of $x \mathrm{f}(x)$ on one part
$\mathbf{1}^{\text {st }} \mathbf{A 1}$ Correct Integration for both parts added together. Ignore limits.
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$ cao or awrt 2.42
(d) $\quad \mathbf{1}^{\text {st }} \mathbf{M} 1$ for using $\mathrm{F}(X)=0.5$. This may be implied by subst into $\mathrm{F}(X)$ and comparing answers with 0.5 .
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$ for substituting both 2.6 and 2.7 into "their $\mathrm{F}(X)$ " -0.5 or "their $\mathrm{F}(X)$ "
$\mathbf{1}^{\text {st }} \mathbf{A 1}$ awrt 0.48 and 0.52 if using "their $\mathrm{F}(X)$ "
and awrt -0.02 and 0.02 or if using "their $F(X)$ " 0.5
Other values possible. You may need to check their values for their correct equation
NB these last two marks are B1 B1 on ePEN but mark as M1 A1
$2^{\text {nd }} \mathbf{A 1}$ for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded
SC using calculators
M1 for sign of a suitable equation
M1 A1 for awrt 2.66 provided equation is correct
A1 correct comment

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q5 (a) <br> (b) | $\begin{array}{ll} X \sim \mathrm{Po}(10) & \\ \mathrm{P}(X<9) & =\mathrm{P}(X \leq 8) \\ & =0.3328 \end{array}$ $Y \sim \operatorname{Po}(40)$ <br> $Y$ is approximately $\mathrm{N}(40,40)$ $\begin{aligned} \mathrm{P}(Y>50) \quad & =1-\mathrm{P}(Y \leq 50) \\ & =1-\mathrm{P}\left(Z<\frac{50.5-40}{\sqrt{40}}\right) \\ & =1-\mathrm{P}(\mathrm{Z}<1.660 . .) \\ & =1-0.9515 \\ & =0.0485 \end{aligned}$ <br> N.B. Calculator gives 0.048437 . <br> Poisson gives 0.0526 (but scores nothing) | M1 A1 <br> M1 <br> M1 <br> A1 <br> A1 <br> (6) Total [9] |
| Q5 (a) <br> (b) | Notes <br> B1 for using Po(10) <br> M1 for attempting to find $\mathrm{P}(X \leq 8)$ : useful values $\mathrm{P}(X \leq 9)$ is 0.4579 (M0), using $\mathrm{Po}(6)$ gives 0.8472 , (M1). <br> A1 awrt 0.333 but do not accept $\frac{1}{3}$ <br> $\mathbf{1}^{\text {st }} \mathbf{M 1}$ for identifying the normal approximation <br> $\mathbf{1}^{\text {st }} \mathbf{A 1}$ for [mean $\left.=40\right]$ and $[\mathrm{sd}=\sqrt{40}$ or var $=40$ ] <br> NB These two marks are B1 M1 on ePEN <br> These first two marks may be given if the following are seen in the standardisation formula : 40 and $\sqrt{40}$ or awrt 6.32 <br> $\mathbf{2}^{\text {nd }} \mathbf{M 1}$ for attempting a continuity correction ( 50 or $30 \pm 0.5$ is acceptable) <br> $3^{\text {rd }} \mathbf{M 1}$ for standardising using their mean and their standard deviation and using either $49.5,50$ or 50.5 . $(29.5,30,30.5)$ accept $\pm$ <br> $2^{\text {nd }} \mathbf{A 1}$ correct z value awrt $\pm 1.66$ or this may be awarded if see $\pm \frac{50.5-40}{\sqrt{40}}$ or $\pm \frac{29.5-40}{\sqrt{40}}$ <br> $\mathbf{3}^{\text {rd }} \mathbf{A 1}$ awrt 3 sig fig in range $0.0484-0.0485$ |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (b) <br> (c) <br> (d) | The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test. $\begin{aligned} & X \sim \mathrm{~B}(30,0.3) \\ & \mathrm{P}(X \leq 3)=0.0093 \\ & \mathrm{P}(X \leq 2)=0.0021 \\ & \mathrm{P}(X \geq 16)=1-0.9936=0.0064 \\ & \mathrm{P}(X \geq 17)=1-0.9979=0.0021 \end{aligned}$ <br> Critical region is $(0 \leq) x \leq 2$ or $16 \leq x(\leq 30)$ <br> Actual significance level $0.0021+0.0064=0.0085$ or $0.85 \%$ <br> 15 (it) is not in the critical region <br> not significant <br> No significant evidence of a change in $p=0.3$ <br> accept $\mathrm{H}_{0}$, (reject $\mathrm{H}_{1}$ ) $\mathrm{P}(x \geq 15)=0.0169$ | B1 <br> M1 <br> A1 <br> A1 <br> AlA1 <br> (5) <br> B1 <br> (1) <br> Bft 2, 1, 0 <br> (2) |
| Q6 (a) <br> (b) <br> (c) <br> (d) | Notes <br> $1^{\text {st }} \mathrm{B} 1$ for "values/ numbers" <br> $\mathbf{2}^{\text {nd }} \mathbf{B 1}$ for "reject the null hypothesis" o.e or the test is significant <br> M1 for using $\mathrm{B}(30,0.3)$ <br> $1^{\text {st }}$ A1 $\mathrm{P}(x \leq 2)=0.0021$ <br> $2^{\text {nd }}$ A1 0.0064 <br> $\mathbf{3}^{\text {rd }} \mathbf{A 1}$ for $(X) \leq 2$ or $(X)<3$ They get A0 if they write $\mathbf{P}(X \leq 2 / X<3)$ <br> $\mathbf{4}^{\text {th }} \mathbf{A 1}(X) \geq 16$ or $(X)>15$ They get A0 if they write $\mathbf{P}(X \geq 16 X>15$ <br> NB these are B1 B1 but mark as A1 A1 <br> $16 \leq X \leq 2$ etc is accepted <br> To describe the critical regions they can use any letter or no letter at all. It does not have to be $X$. <br> B1 correct answer only <br> Follow through 15 and their critical region <br> B1 for any one of the 5 correct statements up to a maximum of B2 <br> - B1 for any incorrect statements |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q7 (a) | $x$ 1 p 2 p <br> $\mathrm{P}(X=x)$ $\frac{1}{4}$ $\frac{3}{4}$ <br> $\mu=1 \times \frac{1}{4}+2 \times \frac{3}{4}=\frac{7}{4}$ or $1 \frac{3}{4}$ or 1.75 $\begin{aligned} \sigma^{2} & =1^{2} \times \frac{1}{4}+2^{2} \times \frac{3}{4}-\left(\frac{7}{4}\right)^{2} \\ & =\frac{3}{16} \text { or } 0.1875 \end{aligned}$ <br> $(1,1,1),(1,1,2)$ any order, $(1,2,2)$ any order, $(2,2,2)$ $(1,2,1)(2,1,1)(2,1,2)(2,2,1)$ <br> all 8 cases considered. <br> May be implied by 3 * $(1,1,2)$ and $3 *(1,2,2)$ | B1 <br> M1 <br> A1 <br> (3) <br> B1 <br> B1 |
|  | $\bar{X}$ 1 $\frac{4}{3}$ $\frac{5}{3}$ 2 <br> $\mathrm{P}(\bar{X}=\bar{X})$ $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{1}{64}$ $3 \times \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{9}{64}$ $3 \times \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64}$ $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64}$ | B1 <br> M1 A1 <br> M1 A1A1 <br> (6) <br> Total [11] |
| Q7 (a) <br> (b) <br> (c) | Notes <br> B1 1.75 oe <br> M1 for using $\sum\left(x^{2} p\right)-\mu^{2}$ <br> A1 0.1875 oe <br> ignore repeats <br> $1^{\text {st }}$ B1 4 correct means (allow repeats) <br> $1^{\text {st }} \mathrm{M} 1$ for $p^{3}$ for either of the ends <br> 1 st A1 for $1 / 64$ or awrt 0.016 and $27 / 64$ or awrt 0.422 <br> $2^{\text {nd }}$ M1 $3 \times p^{2}(1-p)$ for either of the middle two $0<p<1$ <br> May be awarded for finding the probability of the 3 samples with mean of either $4 / 3$ or $5 / 3$. <br> $2^{\text {nd }}$ A1 for 9/64 (or 3/64 three times) and 27/64 (or 9/64 three times) accept awrt 3dp. <br> $3^{\text {rd }}$ A1 fully correct table, accept awrt 3dp. |  |

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA023029 J anuary 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH
advancing learning, changing lives

# Mark Scheme (Results) Summer 2010 

## GCE

## GCE Statistics S2 (6684/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024768
All the material in this publication is copyright
© Edexcel Ltd 2010

듬믐

## J une 2010 <br> Statistics S2 6684 <br> Mark Scheme

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
Q1 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
A population is collection of all items \\
(A random variable) that is a function of the sample which contains no unknown quantities/parameters. \\
The voters in the town \\
Percentage/proportion voting for Dr Smith \\
Probability Distribution of those voting for Dr Smith from all possible samples (of size 100)
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{ll} 
B1 \& (1) \\
B1 \& \\
\& (1) \\
B1 \& \\
B1 \& \\
B1 \& (2)
\end{tabular} \\
(1) \\
[5]
\end{tabular} \\
\hline (a)
(b)
(c)

(d) \& \begin{tabular}{l}
Notes <br>
B1 - collection/group all items - need to have /imply all eg entire/complete/every <br>
B1 - needs function/calculation(o.e.) of the sample/random variables/observations an unknown quantities/parameters(o.e.) NB do not allow unknown variables e.g. "A calculation based solely on observations from a given sample." B1 <br>
"A calculation based only on known data from a sample" B1 <br>
"A calculation based on known observations from a sample" B0 <br>
B1 - Voters <br>
Do not allow 100 voters. <br>
B1 - percentage/ proportion voting (for Dr Smith) the number of people voting (for Dr Smith) Allow 35\% of people voting (for Dr Smith) Allow 35 people voting (for Dr Smith) <br>
Do not allow $35 \%$ or 35 alone <br>
B1 - answers must include all three of these features <br>
(i) All possible samples, <br>
(ii) their associated probabilities, <br>
(iii) context of voting for Dr Smith. <br>
e.g "It is all possible values of the percentage and their associated probabilities." B0 no

 \& 

10 <br>
y imply no quantities
\end{tabular} <br>

\hline
\end{tabular}



## edexcel

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q3 | Method 1 Method 2 Method 3 <br> $\mathrm{P}(X>6)=\frac{1}{6}$ $\mathrm{P}(4<X<6)=\frac{1}{3}$ $\mathrm{P}(X>6)=\frac{1}{6}$ <br> $\mathrm{P}(X<4)=\frac{1}{2}$  $Y \sim \mathrm{U}[3,9] \mathrm{P}(Y>6)=\frac{1}{2}$ <br> total $=\frac{1}{6}+\frac{1}{2}=\frac{2}{3}$ $1-\frac{1}{3}=\frac{2}{3}$ total $=\frac{1}{6}+\frac{1}{2}=\frac{2}{3}$ | B1 M1 <br> A1 <br> M1dep B <br> A1 <br> (5) |
|  | Notes <br> Methods 1 and 2 <br> B1 for 6 and 4 (allow if seen on a diagram on $x$-axis) <br> M1 for $\mathrm{P}(X>6)$ or $\mathrm{P}(6<X<7)$; or $\mathrm{P}(X<4)$ or $\mathrm{P}(1<X<4)$; or $\mathrm{P}(4<X<6)$ <br> Allow $\leq$ and $\geq$ signs <br> A1 $\frac{1}{6}$;or $\frac{1}{2} ; \frac{1}{3}$ must match the probability statement <br> M1 for adding their " $\mathrm{P}(X>6)$ " and their " $\mathrm{P}(X<4)$ " or 1 - their " $\mathrm{P}(4<X<6)$ " dep on getting first B mark <br> A1 cao $\frac{2}{3}$ <br> Method $3 \mathbf{Y} \sim \mathbf{U}[3,9]$ <br> B1 for 6 with $\mathrm{U}[1,7]$ and 6 with $\mathrm{U}[3,9]$ <br> M1 for $\mathrm{P}(X>6)$ or $\mathrm{P}(6<X<7)$ or $\mathrm{P}(6<Y<9)$ <br> A1 $\frac{1}{6}$; or $\frac{1}{2}$; must match the probability statement <br> M1 for adding their " $\mathrm{P}(X>6)$ " and their " $\mathrm{P}(Y>6)$ " dep on getting first B mark <br> A1 cao $\frac{2}{3}$ |  |

## edexcel

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| Q4 (a) | $\begin{aligned} & \frac{4}{9}\left(m^{2}+2 m-3\right)=0.5 \\ & m^{2}+2 m-4.125=0 \\ & m=\frac{-2 \pm \sqrt{4+16.5}}{2} \\ & m=1.26,-3.264 \\ & \text { (median }=1.26 \end{aligned}$ | $\begin{array}{ll}\text { M1 } \\ \text { M1 } \\ \text { A1 } & \\ \end{array}$ |
| (b) | Differentiating $\frac{\mathrm{d}\left(\frac{4}{9}\left(x^{2}+2 x-3\right)\right)}{\mathrm{d} x}=\frac{4}{9}(2 x+2)$ | M1 A1 |
|  | $\mathrm{f}(x)=\left\{\begin{array}{cc} \frac{8}{9}(x+1) & 1 \leq x \leq 1.5 \\ 0 & \text { otherwise } \end{array}\right.$ | B1ft (3) |
| (c) | $\begin{aligned} \mathrm{P}(X \geq 1.2) & =1-\mathrm{F}(1.2) \\ & =1-0.3733 \end{aligned}$ | M1 |
|  | $=\frac{47}{75}, 0.6267$ | A1 (2) |
|  | 0.627 |  |
| (d) | $(0.6267)^{4}=0.154 \quad$ awrt 0.154 or 0.155 | M1 A1 (2) |
|  |  | [10] |
|  | Notes |  |
| (a) | M1 putting $\mathrm{F}(x)=0.5$ <br> M1 using correct quadratic formula. If use calc need to get 1.26 (384...) <br> A1 cao 1.26 must reject the other root. |  |
| (b) | If they use Trial and improvement they have to get the correct answer to gain the sec <br> M1 attempt to differentiate. At least one $x^{n} \rightarrow x^{n-1}$ <br> A1 correct differentiation <br> B1 must have both parts- follow through their $\mathrm{F}^{\prime}(x)$ Condone $<$ | M mark. |
| (c) | M1 finding/writing $1-\mathrm{F}(1.2)$ may use/write $\int_{1.2}^{1.5} \frac{8}{9}(x+1) \mathrm{d} x$ or $1-\int_{1}^{1.2} \frac{8}{9}(x+1) \mathrm{d} x$ or $\int_{1.2}^{1.5}$ "their $\mathrm{f}(x)$ " $\mathrm{d} x$. Condone missing $\mathrm{d} x$ |  |
| (d) | A1 awrt 0.627 <br> M1 (c) ${ }^{4}$ If expressions are not given you need to check the calculation is correct to 2 sf <br> A1 awrt 0.154 or 0.155 |  |


| Question Number | Scheme Marks |
| :---: | :---: |
| Q5 (a) <br> (b) <br> (i) <br> (ii) <br> (c) |  |
| (a) (b) (i) (ii) (c) | Notes <br> B1 Any one of randomly/independently/singly/constant rate. Must have context of connection/logging on/fail <br> B1 Writing or using $\operatorname{Po}(8)$ in (i) or (ii) <br> M1 for writing or finding $\mathrm{P}(X=0)$ <br> A1 awrt 0.0003 <br> M1 for writing or finding $1-\mathrm{P}(X \leq 3)$ <br> A1 awrt 0.958 <br> B1 both hypotheses correct. Must use $\lambda$ or $\mu$ <br> M1 identifying normal <br> A1 using or seeing mean and variance of 48 <br> These first two marks may be given if the following are seen in the standardisation formula : 48 and $\sqrt{48}$ or awrt 6.93 <br> M1 for attempting a continuity correction (Method 1: $60 \pm 0.5 /$ Method 2: $x \pm 0.5$ ) <br> M1 for standardising using their mean and their standard deviation and using either Method 1 [59.5, 60 or 60.5 . accept $\pm$ z.] Method 2 [ ( $x \pm 0.5$ ) and equal to a $\pm z$ value) <br> A1 correct z value awrt $\pm 1.66$ or $\pm \frac{59.5-48}{\sqrt{48}}$, or $\frac{x-0.5-48}{\sqrt{48}}=1.6449$ <br> A1 awrt 3 sig fig in range $0.0484-0.0485$, awrt 59.9 <br> M1 for "reject $\mathrm{H}_{0}$ " or "significant" maybe implied by "correct contextual comment" <br> If one tail hypotheses given follow through "their prob" and $0.05, p<0.5$ <br> If two tail hypotheses given follow through "their prob" with $0.025, p<0.5$ <br> If one tail hypotheses given follow through "their prob" and $0.95, p>0.5$ <br> If two tail hypotheses given follow through "their prob" with $0.975, p>0.5$ <br> If no $\mathrm{H}_{1}$ given they get M0 <br> A1 ft correct contextual statement followed through from their prob and $\mathrm{H}_{1}$. need the words number of failed connections $/ \log$ ons has increased o.e. <br> Allow "there are more failed connections" <br> NB A correct contextual statement alone followed through from their prob and $\mathrm{H}_{1}$ gets M1 A1 |





Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA024768 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

## Mark Scheme (Results) J anuary 2011

GCE

## GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 08445760027 , or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026667
All the material in this publication is copyright
© Edexcel Ltd 2011

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- Mmarks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of $M$ marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\square$ The second mark is dependent on gaining the first mark


## J anuary 2011 <br> Statistics S2 6684 <br> Mark Scheme

| Question Number | Scheme Marks |
| :---: | :---: |
| 1. <br> (a) | Occurrences of the disease are independent <br> The probability of catching the disease remains constant. B1 <br> B1 |
| (b) | $X \sim \operatorname{Bin}(10,0.03)$ B 1 <br> $\mathrm{P}(X=2)=\frac{10 \times 9}{2}(0.03)^{2}(0.97)^{8}=0.0317$ $\quad \mathrm{M} 1 \mathrm{~A} 1$ |
| (c) | $\mathrm{E}(X)=100 \times 0.03=3$ <br> $\operatorname{Var}(X)=100 \times 0.03 \times 0.97=2.91$$\quad$Blcao <br> Blcao |
| (d) | $\lambda=100 \times 0.03$ $=3$ <br> $Y \sim \operatorname{Po}(3)$ $\quad$B1 (use of) <br> $\mathrm{P}(Y>5)$ <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> $=1-\mathrm{P}(Y \leq 5)$ |
|  | Notes |
| (a) | B1 independent <br> B1 probability remains constant. <br> One of these must have the context of disease. <br> No context only one correct B0B0 <br> If only one mark awarded give the first B1 <br> SC if they are both correct without context award B1B0 |
| (b) | $B 1$ for writing or using $\mathrm{B}(10,0.03)$ <br> M1 for writing or using $(p)^{2}(1-p)^{8} \frac{10!}{2!8!}$ allow ${ }^{10} \mathrm{C}_{2},\binom{10}{2}$ etc <br> Allow $\mathrm{P}(\mathrm{X} \leq 2)-\mathrm{P}(\mathrm{X} \leq 1)$ <br> A1 awrt 0.0317 |
| (d) | B1 for using Poisson. Any mean. Common values which imply Poisson used are 0.9665 and 0.8153 <br> dM 1 for writing or using $1-\mathrm{P}(X \leq 5)$ - use of binomial gets M0. <br> This is dependent on them being awarded the previous B mark. <br> A1 awrt 0.0839 <br> SC: Use of Normal in (d) <br> Can get B0 M1 A0.- for M1 we must see $1-\mathrm{P}(X \leq 5)$ <br> or $1-\mathrm{P}(X \leq 5.5)$ oe or get awrt 0.071 |


| Question Number | Scheme Marks |
| :---: | :---: |
| 2. |  |
|  | Notes |
|  | B1 for both $\mathrm{H}_{0}$ and $\mathrm{H}_{1}$ correct. Must use $p$ or $\pi$ (pi) <br> B1 for writing or using $\operatorname{Bin}(10,0.2)$ <br> M1 for finding or writing $1-\mathrm{P}(X \leq 3)$ or $\mathrm{P}(X \leq 4)=0.9672$ <br> $\mathrm{P}(X \geq 5)=0.0328$ oe or a correct critical region <br> A1 awrt 0.121 or $\mathrm{CR} X \geq 5$ <br> M1 need $p<0.5$ and: <br> correct statement using their Probability and 0.05 if one tail test or correct statement using their Probability and 0.025 if two tail test (condone a comparison with 0.05 instead of 0.025 for a two tail test). <br> Do not allow non-contextual conflicting statements eg "significant" and "accept $\mathrm{H}_{0}$ " <br> A1ft correct contextual statement followed through from "their prob". <br> Either a comment on whether the teacher's claim was correct or on whether the student was guessing the answers. <br> NB if a correct contextual statement only is given for their probability then award M1 A1 <br> If $p>0.5$ <br> They may compare with 0.95 (one tail method) or 0.975 (two tail method) Probability is 0.8791 . |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3. <br> (a) | $\mathrm{E}(X)=\frac{3-1}{2}=1$ | B1 cao <br> (1) |
| (b) | $\operatorname{Var}(X)=\frac{(3+1)^{2}}{12}=\frac{4}{3} \mathrm{oe}$ | M1A1 <br> (2) |
| (c) | $\mathrm{E}\left(X^{2}\right)=\frac{4}{3}+1,=\frac{7}{3}$ oe | M1,A1 |
| (d) | $\mathrm{P}(X<1.4)=0.6$ | (2) <br> B1 cao <br> (1) |
| (e) | $\mathrm{P}(X<0)=0.25$ <br> $Y$ is number of values less than 0 $\begin{aligned} & Y \sim \operatorname{Bin}(40,0.25) \\ & \mathrm{P}(Y \geq 10)=1-\mathrm{P}(Y \leq 9) \\ & \\ & =1-0.4395=0.5605 \end{aligned}$ | B1 <br> M1A1 <br> M1 <br> A1 <br> (5) <br> [11] |
|  | Notes |  |
| (b) | $\text { M1 } \frac{(3-1)^{2}}{12} \text { or } \frac{(3+1)^{2}}{12} \text { or } \frac{(3--1)^{2}}{12}$ <br> A1 awrt 1.33 |  |
| (c) | M1 "their(b)" $+[\text { "their (a)" }]^{2}$ or $\int_{-1}^{3} \frac{x^{2}}{4} \mathrm{~d} x$ A1 awrt 2.33 |  |
| (e) | B1 For writing or using the probability of a negative $=0.25$ <br> M1 Writing or use of $\mathrm{B}(40, p)$ <br> A1 Writing or use of $\mathrm{B}(40,0.25)$ <br> M1 Writing or using $1-\mathrm{P}(Y \leq 9)$ <br> A1 awrt 0.561 or 0.560 |  |


| Question Number | Scheme Marks |
| :---: | :---: |
| 4. | $\mathrm{H}_{0}: \lambda=8$ or $\mu=2 \quad \mathrm{H}_{1}: \lambda<8$ or $\mu<2$ B1 B1  <br> Under $\mathrm{H}_{0}, X \sim \operatorname{Po}(8)$  M1 <br> $\mathrm{P}(X \leq 3)=0.0424 \quad$ $\mathrm{CR} X \leq 3$ A1 <br> $0.0424<0.05$, Reject $\mathrm{H}_{0}$. Richard's claim is supported. M1A1ft  <br>   [6] |
|  | Notes |
|  | B1 for $\mathrm{H}_{0}$ correct. Must use $\lambda$ or $\mu$ and 8 or 2 <br> B1 for $\mathrm{H}_{1}$ correct. Must use $\lambda$ or $\mu$ and 8 or 2 <br> M1 for writing or using $\operatorname{Po}(8)-$ may be implied by correct CR <br> A1 awrt 0.0424 or CR $X \leq 3$ <br> M1 need $p<0.5$ and: <br> correct statement using their Probability and 0.05 if one tail test or <br> correct statement using their Probability and 0.025 if two tail test (condone a <br> comparison <br> with 0.05 instead of 0.025 for a two tail test). <br> Do not allow non-contextual conflicting statements eg "significant" and "accept $\mathrm{H}_{0}$ " <br> A1ft correct contextual statement followed through from "their prob". <br> Either a comment on whether Richard's claim was correct <br> or on whether the service has improved. <br> NB if a correct contextual statement only is given for their probability then award M1 A1 $p>0.5$ <br> They may compare with 0.95 (one tail method) or 0.975 (two tail method) <br> Probability is 0.9576 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 5. <br> (a) | $\begin{aligned} & m=-\frac{4}{0.5}=-8 \\ & f(x)=4-8 x\left(^{*}\right) \\ & f(x)=\left\{\begin{array}{cc} -8 x+4 & 0 \leq x \leq 0.5 \\ 0 & \text { otherwise } \end{array}\right. \end{aligned}$ | M1 <br> Alcso <br> B1 <br> B1 <br> (4) |
| (b) | $\begin{aligned} \mathrm{F}(x) & =\int_{0}^{x}(-8 x+4) \mathrm{d} x \\ & =\left[-4 x^{2}+4 x\right]_{0}^{x} \\ \mathrm{~F}(x) & =\left\{\begin{array}{cc} 0 & x<0 \\ -4 x^{2}+4 x & 0 \leq x \leq 0.5 \\ 1 & x>0.5 \end{array}\right. \end{aligned}$ | M1 M1 A1 B1 (4) |
| (c) | $\begin{gathered} -4 x^{2}+4 x=0.5 \\ x=\frac{1}{4}(2-\sqrt{2})=0.146 \end{gathered}$ | M1 M1A1 (3) |
| (d) | $x=0$ | B1 (1) |
| (e) | Positive Skew as mode<median | Blft $(1)$ <br>  $[13]$ |


| Question <br> Number | Scheme | Marks |
| ---: | :--- | :--- |
| (a) | M1 for $\pm \frac{4}{0.5}$ or attempt at gradient <br> A1cso for proceeding to given expression with no incorrect working seen <br> B1 for top line. Must have $\mathrm{f}(x)$ and $\{$ and more than one line. Condone use of $<$. <br> B1 for 0 otherwise and no other parts. |  |
| (b) | M1 attempting to integrate $\left(\right.$ at least one $\left.x^{n} \rightarrow x^{n+1}\right)$ (ignore limits) <br> M1 correct limits used or +C and either $\mathrm{F}(0)=0$ or $\mathrm{F}(0.5)=1$, <br> may be implied by seeing $4 x-4 x^{2}$ |  |
| A1 middle line. May write $4 x-4 x^{2}$ |  |  |
| B1 top and bottom line |  |  |, | M1 Their $\mathrm{F}(x)=0.5$ |
| :--- |
| M1 attempting to solve - either correct use of quadratic formula |
| or correct completion of the square |
| A1 awrt 0.146 or $\frac{2-\sqrt{2}}{4}$ o.e |$\quad$| (d) | B1 for 0 |
| :--- | :--- |
| (e) | B1 ft their mode and median. Need direction and correct corresponding reason <br> OR B1 positive skew from tail on right hand side in diagram |



| Question <br> Number | Scheme | Marks |
| ---: | :--- | :--- |
| (a) | M1 Poisson <br> A1 2.5 |  |
| (b) | Any two of the statements or equivalent. At least one must be in context. Need words that <br> imply "cars arrive" or "rate of arrival." <br> No context but 1 correct reason B0B0 context but 2 correct reasons B1B0 |  |
| (c) (i) | B1 awrt 0.0821 |  |
| (ii) | M1 for writing or finding 1 $-\mathrm{P}(X \leq 3)$ |  |
| (d) | A1 awrt 0.242 <br> M1 writing or using Po(10) <br> M1 for 1-0.0487 or 0.9513 seen or implied by correct value for $m$ |  |
| (e) | B1 use of normal <br> B1 using or seeing mean and variance of 25 <br> These first two marks may be given if the following are seen in the correct places in the <br> standardisation formula $: 25$ and $\sqrt{25}$ or 5 <br> M1 for attempting a continuity correction $(14 \pm 0.5)$ or $(15 \pm 0.5)$ <br> M1 for standardising using their mean and their standard deviation and using $[14.5,14$, <br> $13.5,15$ or 15.5$]$ accept $\pm$ z. |  |
| A1 correct z value $\pm 2.1$ or $\pm \frac{14.5-25}{5}$, |  |  |
| A1 awrt 0.0179 |  |  |
| NB use of calculator gets full marks if the answer is awrt 0.0179. |  |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7. <br> (a) | $\begin{aligned} \int_{0}^{9} k\left(81 x-x^{3}\right) \mathrm{d} x & =1 \\ k\left[\frac{81}{2} x^{2}-\frac{1}{4} x^{4}\right]_{0}^{9} & =1 \\ k\left(\frac{6561}{2}-\frac{6561}{4}\right) & =1 \\ k & =\frac{4}{6561} * * \mathrm{ag}^{* *} \end{aligned}$ | M1 <br> M1 <br> A1 cso (3) |
| (b) | $\begin{aligned} \mathrm{E}(X) & =\int_{0}^{9} k x^{2}\left(81-x^{2}\right) \mathrm{d} x \\ & =k\left[\frac{81}{3} x^{3}-\frac{x^{5}}{5}\right]_{0}^{9} \\ & =k(19683-11809.8) \\ & =4.8 \end{aligned}$ | M1A1 <br> dM1 <br> A1 cao <br> (4) |
| (c) | $\begin{aligned} \mathrm{P}(X>5) \quad & =\int_{5}^{9} k\left(81 x-x^{3}\right) \\ & =k\left[\frac{81}{2} x^{2}-\frac{1}{4} x^{4}\right]_{5}^{9} \\ & =k\left(\frac{6561}{4}-856.25\right)=\operatorname{awrt} 0.478 \text { or } \frac{3136}{6561} \end{aligned}$ | M1 <br> M1d <br> A1 <br> (3) |
| (d) | $\begin{aligned} \mathrm{P}(\text { At least } 2 \text { queue for more than } 5 \mathrm{mins}) & =3(1-0.478)(0.478)^{2}+0.478^{3} \\ & =0.467\end{aligned}$ | M1A1ft <br> A1 <br> (3) <br> [13] |



Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026667 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

#  

Mark Scheme (Results)
June 2011

## GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028840
All the material in this publication is copyright
© Edexcel Ltd 2011

## EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\quad$ The second mark is dependent on gaining the first mark

June 2011

## 6684 Statistics S2

Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. <br> (a) | The list of ID numbers | B1 <br> (1) |
| (b) | $F \sim \mathrm{~B}(50,0.02)$ | B1 B1 <br> (2) |
| Notes: <br> (a) <br> (b) | B1 for idea of list/register/database and identity numbers <br> NB B0 if referring to the sample or 50 or only part of the population. <br> These must be in part (b) to gain the marks <br> $1^{\text {st }} \mathrm{B} 1$ for Binomial distribution <br> $2^{\text {nd }} \mathrm{B} 1$ for $n=50$ and $p=0.02$ or $(50,0.02)$ <br> NB $(0.02,50)$ is B0 <br> $\mathrm{Po}(1)$ alone is B 0 B 0 <br> For a probability table <br> $1^{\text {st }} \mathrm{B} 1$ Use of $\mathrm{B}(50,0.02) \quad \mathrm{NB} \mathrm{P}(X=0)=0.3642$ <br> $2^{\text {nd }} \mathrm{B} 1$ Table must have all 50 values and their probabilities. |  |


| Question Number | Scheme |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 2. <br> (a) | Poisson |  |  | B1 (1) |
| (b) |  |  |  | B1 B1 <br> M1 <br> A1 <br> M1d <br> A1ft |
| (c) | Let $Y=$ the number of vehicles in 10 s then $Y \sim \operatorname{Po}(6)$ <br> Tables: $\mathrm{P}(Y \leq 10)=0.9574$ so $\mathrm{P}(Y \geq 11)=0.0426$ <br> so needs $\underline{11}$ vehicles |  |  | B1 <br> M1 <br> A1 <br> (3) $10$ |
| Notes: <br> (a) <br> (b) | B1 for Poisson or Po. Ignore their value for the mean. <br> $1^{\text {st }} \mathrm{B} 1$ for $\mathrm{H}_{0}: \mu / \lambda=9$ or $\mu / \lambda=36$ <br> $2^{\text {nd }} \mathrm{B} 1$ for $\mathrm{H}_{1}: \mu / \lambda>9$ or $\mu / \lambda>36$ <br> One tail <br> $1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leq 11)$ or writing $\mathrm{P}(X \leq 14)=0.9585$ or $\mathrm{P}(X \geq 15)=0.0415$. <br> May be implied by correct CR.or probability $=0.197$ <br> A1 for 0.197 or a correct CR. Allow $X>14$. NB $\mathrm{P}(X \leq 11)=0.8030$ on its own scores M1A1 $2^{\text {nd }}$ M1 dependent on the $1^{\text {st }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept $\mathrm{H}_{0}$ ". Ignore comparisons. <br> $2^{\text {nd }}$ A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1. |  |  |  |
|  |  | $0.05<p<0.95$ | $p<0.05$ or $p>0.95$ |  |
|  | $2^{\text {nd }} \mathrm{M} 1$ | not significant/ accept $\mathrm{H}_{0}$ / Not in CR | significant/ reject $\mathrm{H}_{0}$ / |  |
|  | $2^{\text {nd }} \mathrm{A} 1$ | Insufficient evidence to switch on the speed restrictions | Sufficient evidence restrictions | e speed |
|  | Two tail <br> $1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leq 11)$ or writing $\mathrm{P}(X \leq 15)=0.9780$ or $\mathrm{P}(X \geq 16)=0.022$. May be implied by correct CR. or probability $=0.197$ <br> A1 for 0.197 or $\mathrm{CR} X \geq 16$. Allow $X>15$. NB $\mathrm{P}(X \leq 11)=0.8030$ on its own scores M1A1 $2^{\text {nd }}$ M1 dependent on the $1^{\text {st }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg"significant" and "accept $\mathrm{H}_{0}$ ". Ignore |  |  |  |

:
ng lives

| Question <br> Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
|  | comparisons. <br> $2^{\text {nd }}$ A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1. |  |  |
|  | $0.025<p<0.975$ | $p<0.025$ or $p>0.975$ |  |
|  | $2^{\text {nd }}$ M1 $n$ not significant/ accept $\mathrm{H}_{0} /$ Not in CR | significant/ reject $\mathrm{H}_{0} /$ In CR |  |
|  | $2^{\text {nd }} \mathrm{A} 1$ $\begin{array}{l}\text { Insufficient evidence to switch on the } \\ \text { speed restrictions }\end{array}$ | Sufficient evidence to switch on thespeed restrictions |  |
| (c) | B1 for identifying Po(6) - may be implied by use of correct tablesM1 any one of the probs 0.9574 or 0.0426 or 0.9799 or 0.0201 may be implied by correctanswer of 11A1 cao do not accept $X \geq 11$NB answer of 11 with no working gains all three marks. |  |  |
| 3. (a) | Mode $=3$ from graph |  | B1 |
| (b) | $\int_{0}^{3} k x^{2} \mathrm{~d} x=0.5 \Rightarrow\left[\frac{k x^{3}}{3}\right]_{0}^{3}=0.5$ <br> So $\frac{27 k}{3}-0=0.5 \Rightarrow k=\frac{1}{18}$ <br> (using median $=3$ ) |  | M1 A1 <br> M1d A1 <br> (4) |
| (c) | $\begin{aligned} & \text { Height of triangle }=\frac{1}{18} \times 3^{2}=\frac{1}{2} \\ & \text { Area of triangle }=\frac{1}{2} \times(a-3) \times \frac{1}{2}=\frac{1}{2} \quad \text { so } a=5 \end{aligned}$ |  | B1ft  <br> M1  <br> A1  <br>   <br>   <br>   |
| (d) | From graph distribution is negative skew (left tail is longer) $\mu<$ median for negative skew so $\mathrm{E}(X)<3$$\left[\text { N.B. } \mathrm{E}(X)=2 \frac{23}{24}\right]$ |  | B1  <br> B1d  <br>  (2) <br>  $\mathbf{1 0}$ |
| Notes: <br> (b) <br> (c) | $1^{\text {st }}$ M1 for attempt to integrate $\mathrm{f}(x)$ (need $x^{3}$ ). Integration must be in part (b) <br> $1^{\text {st }} \mathrm{A} 1$ for correct integration. Ignore limits for these two marks. <br> $2^{\text {nd }}$ M1 Dependent on the previous M mark being awarded. For use of correct limits and set equal to 0.5 - leading to a linear equation for $k$. No need to see 0 substituted. <br> $2^{\text {nd }} \mathrm{A} 1$ for $k=\frac{1}{18}$ or exact equivalent <br> NB $k=\frac{1}{18}$ with no working gains M0A0M0A0 <br> $\mathrm{k}=\frac{1 / 2}{9}=\frac{1}{18}$ without sight of integration is M0A0M0A0 <br> B1 for correct height of triangle using their $k$. ie $9 k$. May be seen in working for area of triangle. Or correct gradient of line ie $\frac{9 k}{(3-a)}$ o.e. |  |  |

advancing learning, changing lives

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
|  | M1 for a correct linear equation for $a$, in the form $\pm \frac{1}{2} \times(a-3) \times 9 k=\frac{1}{2}$ (Must see NB if they have stated their height and then used their height rather than $9 k$ allow M1 A1 cao <br> NB stating $\mathrm{a}=5$ and then verifying area of the triangle $=0.5$ is acceptable. <br> $\mathrm{NBa}=5$ on its own is B0M0A0 <br> SC Integration of both parts $=1$ or Integration of line $=0.5$ leading to $a^{2}-8 a+15=0$ <br> M1 and if they identify $a=5 \mathrm{~A} 1$ | the halves) <br> gets B1 |
| (d) | $1^{\text {st }} \mathrm{B} 1$ for identifying negative skew <br> $2^{\text {nd }}$ B1 dependent on previous B mark being awarded. For correct deduction $\mathrm{E}(X)<3$ |  |
| 4 (a) | $\begin{aligned} & \frac{9.5-7}{10-7} \\ & =\frac{5}{6} \quad \text { awrt } 0.833 \end{aligned}$ | M1 <br> A1 <br> (2) |
| (b) | $\begin{aligned} \mathrm{P}(\text { Longest }>9.5)=1-\mathrm{P}(\mathrm{all}<9.5)=1-\left(\frac{5}{6}\right)^{3} & \\ & =\frac{91}{216} \text { or } 0.421 \end{aligned}$ | M1 <br> A1 <br> (2) |
| (c) | $\mathrm{P}(\text { a stick }<7.6)=\frac{0.6}{3}=0.2$ <br> Let $Y=$ number of sticks (out of 6 ) $<7.6$ then $Y \sim \mathrm{~B}(6,0.2)$ $\begin{aligned} \mathrm{P}(Y>4) & =1-\mathrm{P}(Y \leq 4) \\ & =1-0.9984 \\ & =0.0016 \text { or } \frac{1}{625} \end{aligned}$ | B1 <br> M1 <br> M1 <br> A1 <br> (4) 8 |
| Notes: <br> (a) <br> (b) <br> (c) | M1 for an expression for the probability e.g. $\int_{7}^{9.5} \frac{1}{3} \mathrm{~d} x$ <br> M1 for $1-(a)^{3}$ or $(1-a)^{3}+3(1-a)^{2} a+3(1-a) a^{2}$ <br> A1 awrt 0.421 <br> B1 0.2 may be implied by at least one correct probability <br> $1^{\text {st }} \mathrm{M} 1$ for writing or using $\mathrm{B}(6, p)$ may be implied by $n p^{x}(1-p)^{6-x}$ using their $p$ and $n$ <br> $2^{\text {nd }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(Y \leq 4)$ or $n p^{5}(1-p)+p^{6}(n$ is an integer $>1)$ <br> A1 cao <br> NB 0.0016 with no working gets B0M0M0A0 |  |
| 5. <br> (a) | $X \sim \operatorname{Po}(5) ; \quad \mathrm{P}(X \leq 3)=0.2650$ | M1 A1 <br> (2) |

:
ng lives

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (b) | Let $Y=$ the no.of planks with at most 3 defects, $Y \sim$ Binomial $\begin{aligned} \mathrm{P}(Y<2) & =\mathrm{P}(Y \leq 1) \\ & =\left[0.735^{6}+6 \times 0.265 \times 0.735^{5}\right] \end{aligned}$ $=0.4987 \ldots . \quad \text { awrt } 0.499 \text { or } 0.498$ | M1 <br> A1ft <br> M1 <br> A1 <br> A1 |
| (c) | Let $T=$ total number of defects on 6 planks, $\quad T \sim \operatorname{Po}(30)$ so $T \approx S \sim$ Normal $\begin{aligned} & S \sim \mathrm{~N}(30,30) \\ & \mathrm{P}(T<18)=\mathrm{P}(S<17.5) \\ &=P\left(z<\frac{17.5-30}{\sqrt{30}}\right) \\ &=\mathrm{P}(Z<-2.28 \ldots) \\ &=0.01123 \ldots \end{aligned}$ <br> awrt 0.0112 or 0.0113 | M1 <br> A1 <br> M1 <br> M1 <br> A1 <br> A1 |
| Notes: <br> (a) <br> (b) <br> (c) | M1 for identifying $\operatorname{Po}(5)$ - it should be clearly seen somewhere or implied <br> A1 for correct probability. Allow 0.265 <br> $1^{\text {st }} \mathrm{M} 1$ for writing or using the binomial - may be implied by use of $n q^{x}(1-q)^{6-x}$ with $n \geq 1$ <br> $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for $n=6$ and $p=$ their (a) may be implied by $6 p(1-p)^{5}$ or $(1-p)^{6}$ <br> NB if they write $\mathrm{B}(6,(\mathrm{a}))$ they get M1 A1 <br> $2^{\text {nd }} \mathrm{M} 1$ for writing $\mathrm{P}(Y \leq 1)$ or $\mathrm{P}(Y=0)+\mathrm{P}(Y=1)$ or $(1-q)^{6}+\boldsymbol{n} q(1-q)^{5}$ with $n \geq 1$ <br> $2^{\text {nd }} \mathrm{A} 1(1-p)^{6}+6 p(1-p)^{5}$ where $p=$ their (a) <br> $3^{\text {rd }} \mathrm{A} 1$ for awrt 0.499 <br> SC use of a probability in the tables - lose last two marks - could get M1A1M1 M0 A0 <br> $1^{\text {st }}$ M1 for a normal approx <br> $1^{\text {st }} \mathrm{A} 1$ for correct mean and sd <br> $2^{\text {nd }} \mathrm{M} 1$ for use of continuity correction, either 17.5 or 18.5 or 42.5 or 41.5 seen <br> $3^{\text {rd }}$ M1 Standardising with their mean and their sd and 17.5 or 18 or 18.5 or 41.5 or 42 or 42.5 <br> NB if they have not written down a mean and sd then they need to be correct in the standardisation to gain this mark. <br> $2^{\text {nd }} \mathrm{A} 1$ for $z= \pm 2.28$ or better. May be awarded for $\pm \frac{17.5-30}{\sqrt{30}}[\mathrm{NB}$ no continuity correction $z=$ <br> 2.19] <br> $3^{\text {rd }} \mathrm{A} 1$ for awrt 0.0112 or 0.0113 [NB no approximation gives $0.00727 \ldots$ ] <br> SC using $\mathrm{P}(X<18.5)-\mathrm{P}(X<17.5)$ can get M1 A1 M1 M0A0A0 |  |

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
edexcel \\
advancing learning, changing lives
\end{tabular}} \\
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
6. \\
(a)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0}: p=0.15 \quad \mathrm{H}_{1}: p \neq 0.15 \\
\& X \sim \mathrm{~B}(30,0.15) \quad \mathrm{P}(X \leq 1)=0.0480 \text { or } \mathrm{CR}: X=0 \\
\& (0.0480>0.025)
\end{aligned}
\] \\
not a significant result or do not reject \(\mathrm{H}_{0}\) or not in CR \\
there is no evidence of a change in the proportion of customers buying an item from the display.
\end{tabular} \& \begin{tabular}{l}
B1 B1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
(6)
\end{tabular} \\
\hline (b)

Notes: \& \begin{tabular}{l}
$$
\mathrm{H}_{0}: p=0.2 \quad \mathrm{H}_{1}: p>0.2
$$ <br>
Let $S=$ the number who buy sandwiches, $S \sim \mathrm{~B}(120,0.2)$,
$$
\begin{array}{rlrl}
S \approx W \sim \mathrm{~N}\left(24, \sqrt{19.2}^{2}\right) \\
\mathrm{P}(S \geq 31) & =\mathrm{P}(W \geq 30.5) \\
& =\mathrm{P}\left(Z>\frac{30.5-24}{\sqrt{19.2}}\right) & \text { or } & \frac{x-0.5-24}{\sqrt{19.2}}=1.2816 \\
& {[=\mathrm{P}(Z>1.48 . .)]} & & \\
& =1-0.9306 & & \\
& =0.0694 & &
\end{array}
$$ <br>
$<0.10$ so a significant result, there is evidence that more customers are purchasing sandwiches or the shopkeepers claim is correct.

 \& 

B1 <br>
M1 A1 <br>
M1 <br>
M1 <br>
M1 <br>
A1 <br>
B1ft <br>
(8)
\end{tabular} <br>

\hline
\end{tabular}

(a) $\quad 1^{\text {st }} \mathrm{B} 1$ for $\mathrm{H}_{0}$ must use $p \quad 2^{\text {nd }} \mathrm{B} 1$ for $\mathrm{H}_{1}$ must use $p$
$1^{\text {st }}$ M1 for writing or using $\mathrm{B}(30,0.15)$ - may be implied by correct CR
$1^{\text {st }} \mathrm{A} 10.0480$ or $X=0$. Allow $X \leq 0$. Ignore upper CR. NB Allow CR $X \leq 1$ if using one tail test.
$2^{\text {nd }}$ M1 A correct statement (see table below) Do not allow non-contextual conflicting statements eg"significant" and "accept $\mathrm{H}_{0}$ ". Ignore comparisons
$2^{\text {nd }} \mathrm{A} 1$ for a correct statement in context. For context we need idea of change/decrease in number of customers buying from display - may use different words. NB A correct contextual statement on its own scores M1A1

|  | Two tail $0.025<p<0.975$ or <br> One tail $0.05<p<0.95$ | Two tail $p<0.025$ or $p>0.975$ or <br> One tail $p<0.05$ or $p>0.95$ |
| :--- | :--- | :--- |
| $2^{\text {nd }}$ | not significant/ accept $\mathrm{H}_{0} /$ Not in CR or <br> M1 <br> contextual | significant/ reject $\mathrm{H}_{0} /$ In CR or contextual |
| $2^{\text {nd }}$ | There is no evidence of a change/decrease <br> A1 <br> in the proportion of customers buying an <br> item from the display | There is evidence of a change/decrease in <br> the proportion of customers buying an item <br> from the display. |

(b) $\quad 1^{\text {st }} \mathrm{B} 1$ both hypotheses correct - must use $p$.
$1^{\text {st }}$ M1 for a normal approx
$1^{\text {st }} \mathrm{A} 1$ for correct mean and sd
$2^{\text {nd }}$ M1 for use of continuity correction, either 30.5 or 31.5 or $(x \pm 0.5)$ seen
$3^{\text {rd }}$ M1 standardising with their mean and their sd and $30.5,31$ or 31.5 or $x$ or $\left.(x \pm 0.5)\right)$
$4^{\text {th }}$ M1 for $1-$ tables value or 1.2816
$2^{\text {nd }} \mathrm{A} 1$ for awrt 0.069 or $x=30.1$
$2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ For a correct conclusion in context using their probability and 0.1 For context we need idea of more customers buying sandwiches - may use different words

| Question | Scheme |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: |
|  |  | One tail $0.1<p<0.9$ or Two tail $0.05<p<0.95$ | One tail $p<0.1$ or $p>0.9$ or Two 0.05 or $p>0.95$ | $\text { iil } p<$ |
|  | $2^{\text {nd }}$ M1 | not significant/ accept $\mathrm{H}_{0} /$ Not in CR or contextual | significant/ reject $\mathrm{H}_{0} /$ In CR or conte | tual |
|  | $\begin{aligned} & 2^{\text {nd d }} \\ & \text { A1 } \end{aligned}$ | There is no evidence of an increase in the proportion of customers buying sandwiches | There is evidence of a change/increa proportion of customers buying sand | in the wiches. |
|  | SC using $\mathrm{P}(X<31.5)-\mathrm{P}(X<30.5)$ can get B1M1 A1 M1 M1M0A0B0 |  |  |  |
| 7 (a) | $\cap$ shape which does not go below the $x$-axis [condone missing patios] Graph must end at the points $(1,0)$ and $(5,0)$ and the points labelled at 1 and 5 |  |  | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$ <br> (2) |
| (b) | $\mathrm{E}(X)=3$ (by symmetry) |  |  | B1 |
| (c) | $\begin{align*} {\left[E\left(X^{2}\right]=\int x^{2} \mathrm{f}(x) \mathrm{d} x\right.} & =\frac{3}{32} \int\left(6 x^{3}-x^{4}-5 x^{2}\right) \mathrm{d} x  \tag{1}\\ & =\frac{3}{32}\left[\frac{6 x^{4}}{4}-\frac{x^{5}}{5}-\frac{5 x^{3}}{3}\right]_{1}^{5} \\ & =\frac{3}{32}\left(\left[\frac{6 \times 625}{4}-625-\frac{625}{3}\right]-\left[\frac{6}{4}-\frac{1}{5}-\frac{5}{3}\right]\right)=9.8 \tag{*} \end{align*}$ |  |  | M1 <br> A1 <br> M1 <br> A1 cso <br> (4) |
| (d) | $\begin{aligned} \text { s.d. } & =\sqrt{9.8-\mathrm{E}(X)^{2}}, \\ & =0.8944 \ldots \end{aligned}$ |  | awrt 0.894 | M1 A1 <br> (2) |
| (e) | $\mathrm{F}(1)=0 \Rightarrow \frac{1}{32}(a-15+9-1)=0$, leading to $\underline{a=7}$ |  |  | M1 A1 <br> (2) |
| (f) | $\mathrm{F}(2.29)=0.2449 \ldots, \mathrm{~F}(2.31)=0.2515 \ldots$ <br> Since $\mathrm{F}\left(q_{1}\right)=0.25$ and these values are either side of 0.25 then $2.29<q_{1}<2.31$ |  |  | $\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$ |
| (g) | Since the distribution is symmetric $q_{3}=5-1.3=\underline{3.7}$ cao |  |  | B1 <br> (1) |
| (h) | We know $\mathrm{P}\left(q_{1}=2.3<X<3.7=q_{3}\right)=0.5$ so $k \sigma=0.7$$\text { so } k=\frac{0.7}{0.894 . . .}=0.7826 . .=\text { awrt } 0.78$ |  |  | M1 |
|  |  |  |  | A1 (2) |
|  |  |  |  | 17 |

advancing learning, changing lives


Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA028840 J une 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Llywodraeth Cynulliad Cymru Welsh Assembly Government

# Mark Scheme (Results) 

## January 2012

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030902
All the material in this publication is copyright
© Pearson Education Ltd 2012

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\_$will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

## General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving $\mathbf{3}$ term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for $a, b$ and $c$ ), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

## Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ( $x^{n} \rightarrow x^{n-1}$ )
2. Integration

Power of at least one term increased by 1. ( $x^{n} \rightarrow x^{n+1}$ )

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

## January 2012 <br> 6684 Statistics S2 <br> Mark Scheme



| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 2 |  |  | B1 <br> B1 <br> M1 <br> M1 <br> A1 <br> M1 dep <br> A1 <br> (7) |
|  | Notes <br> $1^{\text {st }} \mathrm{B} 1$ for $\mathrm{H}_{0}: p=0.5$ <br> $2^{\text {nd }} \mathrm{B} 1$ for $\mathrm{H}_{1}: p>0.5$ <br> SC If both hypotheses are correct but a different letter to $p$ is used they get B1 B0. If no letter is used they get B0 B0. <br> $1^{\text {st }}$ M1 writing or using $B(30,0.5)$ <br> One tail <br> $\overline{2^{\text {nd }} \mathrm{M} 1}$ for writing or using $1-\mathrm{P}(X \leq 20)$ or writing $\mathrm{P}(X \leq 19)=0.9506$ or $\mathrm{P}(X \geq 20)=0.0494$. May be implied by correct CR.or probability $=0.0214$ <br> A1 for 0.0214 or $\mathrm{CR} X \geq 20 / X>19$. NB $\mathrm{P}(X \leq 20)=0.9786$ on its own scores M1A1 <br> $3^{\text {rd }}$ M1 dependent on the $2^{\text {nd }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept $\mathrm{H}_{0}$ ". Ignore comparisons. <br> $2^{\text {nd }} \mathrm{A} 1$ for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1. <br> $0.05<p<0.95$ $p<0.05$ or $p>0.95$ |  |  |
|  | Two tail <br> $1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leq 20)$ or writing $\mathrm{P}(X \leq 20)=0.9786$ or $\mathrm{P}(X \geq 21)=0.0214$. May be implied by correct CR. or probability $=0.197$ <br> A1 for 0.0214 or $\mathrm{CR} X \geq 21 / X>20$. NB $\mathrm{P}(X \leq 20)=0.9786$ on its own scores M1A1 $3^{\text {rd }}$ M1 dependent on the $2^{\text {nd }}$ M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg"significant" and "accept $\mathrm{H}_{0}$ ". Ignore comparisons. <br> $2^{\text {nd }}$ A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1. |  |  |
| Question | Scheme |  | Marks |





| Question <br> Number | Scheme | Marks |
| :--- | :---: | :---: |


| 6 (a) |  <br> shape labels | B1 <br> B1 |
| :---: | :---: | :---: |
| (b) | $\int_{1}^{k}\left(x-\frac{1}{2}\right) \mathrm{d} x=\frac{1}{2}$ | (2) <br> M1 |
| (c) | $\begin{aligned} & {\left[\frac{1}{2} x^{2}-\frac{1}{2} x\right]_{1}^{k}=\frac{1}{2}} \\ & k^{2}-k-1=0 \quad \text { o.e. } \\ & k=\frac{1}{2}(1+\sqrt{5}) \end{aligned}$ | A1 <br> M1A1 cso |
|  | $F(x)=\left\{\begin{array}{lc} 0, & x<0 \\ \frac{1}{2} x, & 0 \leq x<1 \\ \frac{1}{2} x^{2}-\frac{1}{2} x+\frac{1}{2}, & 1 \leq x \leq k \\ 1, & x>k \end{array}\right.$ <br> Note: Working for the M1A1A1 $\int_{1}^{k} x-\frac{1}{2} \mathrm{~d} x+\mathrm{C}=\frac{1}{2} x^{2}-\frac{1}{2} x ;+\frac{1}{2}$ | B1 <br> M1A1A1B1 <br> B1 1st and last <br> (6) <br> (M1A1;A1) |
| (d) | $\begin{align*} \mathrm{P}(0.5<X<1.5) & =\mathrm{F}(1.5)-\mathrm{F}(0.5) \\ & =0.875-0.25 \\ & =0.625 \tag{2} \end{align*}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
| (e) | Median is $x=1$ | B1 |
| (f) | Mode is $x=k$ or $\frac{1}{2}(1+\sqrt{5})$ or awrt1.62 <br> Negative skew <br> Median<mode or from graph more values are to the right. | B1 <br> (2) <br> B1 <br> B1d |
|  |  | (2) 18 |
| (a) | Notes <br> 1st B1 Correct shape with straight lines. Must all be above the $x$-axis <br> 2nd B1 A fully correct graph with the labels $1, k, 0.5, k-0.5$ seen in the correct places. <br> Allow the use of $\frac{1}{2}(1+\sqrt{5}) /$ awrt 1.62 instead of $k$. |  |

1st M1 $\int_{1}^{k} x-\frac{1}{2} \mathrm{~d} x=0.5$
or $\int_{1}^{k} x-\frac{1}{2} \mathrm{~d} x+0.5=1$
ignore limits
or $\int_{1}^{k} x-\frac{1}{2} \mathrm{~d} x+\int_{1}^{k} \frac{1}{2} \mathrm{~d} x=1$
or $\frac{1}{2}(k-0.5+0.5)(k-1)=0.5$ or any correct method of finding the area
1st A1 for a quadratic equation in the form $a\left(k^{2}-k-1\right)=0$ or $a k^{2}-a k=a$. where $a$ is a constant.
$2^{\text {nd }} \mathrm{M} 1$ correct method for solving a quadratic of the form $a k^{2}-b k+c=0$ where $a, b, c \neq 0$. There must be at least one correct step before the final answer. Allow substituting in $k$ into a quadratic of the form $a k^{2}-b k+c=0$.
$2^{\text {nd }}$ A1 cso for $k=\frac{1}{2}(1+\sqrt{5})$
1st B1 for second line. Do not penalise the use of $<$ instead of $\leq$ and vice versa
M1 for use of $\int_{1}^{k} x-\frac{1}{2} \mathrm{~d} x+$ C ignore limits. For use they must have $x \rightarrow x^{2}$
1st A1 correct integration $\frac{1}{2} x^{2}-\frac{1}{2} x$
2nd A1 C $=\frac{1}{2}$
NB M1A1A1 may be implied by correct 3 rd line in $\mathrm{F}(x)$
2nd B1 for 3rd line. Statement of the form $\frac{1}{2} x^{2}-\frac{1}{2} x \pm C$. Do not penalise the use of $<$ instead of $\leq$ and vice versa. Allow $k$ or value of $k$. $C$ may equal 0 .
3rd B1 for first and last line. Do not penalise the use of $\leq$ instead of $<$ and $\geq$ instead of $>$. Allow $k$ or value of $k$
(d) $\quad$ M1 Using $\mathrm{F}(1.5)-\mathrm{F}(0.5) .1 .5$ must be put into the third line of the c.d.f. and 0.5 must be put into the second line of the c.d.f..
or $\int_{0.5}^{1} \frac{1}{2} x \mathrm{~d} x+\int_{1}^{1.5} x-\frac{1}{2} \mathrm{~d} x$ need to attempt integration, at least one $x^{n} \rightarrow x^{n+1}$
or seeing $0.25+0.375$ or any correct method of finding the area..
(NB if they have not used +C or $\mathrm{C}=0$ they will get 0.125 . This will get M1A0). An answer of 0.125 from an incorrect method gains M0 A0.
(e) If it is not clear which one is the mode and which one is the median assume the median is the first answer and mode the second.
(f) B1 negative/negative skew(ness). Do not allow negative correlation.

B1 dependent on previous B mark being awarded. Reason must follow from their values or diagram.

| Question <br> Number | Scheme | Marks |
| :---: | :--- | :--- |
| $\mathbf{7 ( a ) ( i )}$ | The range of values/region/area/set of values of the test statistic that would lead you <br> to $\underline{\text { reject } \mathbf{H}_{0}}$ <br> (a) (ii) <br> The probability of incorrectly rejecting $\mathrm{H}_{0}$ or <br> Probability of rejecting $\mathrm{H}_{0}$ when $\mathrm{H}_{0}$ is true B1 |  |

(b) (i)
$X \sim \operatorname{Po}(8)$
$\mathrm{P}(X \leq 4)=0.0996$
$\mathrm{P}(X \leq 3)=0.0424$
(b) (ii)

Critical region [0,3]
awrt 0.0424
(c)
$\mathrm{H}_{0}: \lambda=8 \quad($ or $\mu=8)$
$\mathrm{H}_{1}: \lambda>8 \quad($ or $\mu>8)$
$\mathrm{P}(X \geq 13)=1-\mathrm{P}(X \leq 12)$
or $\mathrm{P}(X \leq 13)=0.9658$
$=1-0.9362$
$=0.0638$
CR $X \geq 14$
so insufficient evidence to reject $\mathrm{H}_{0} /$ not significant/ not in critical region
There in insufficient evidence of an increase/change in the rate/number of sales per
A1 month or the estate agents claim is incorrect
Notes
(a)(i)
(ii)
(b)
(c)

Allow accept $\mathrm{H}_{1}$ instead of reject $\mathrm{H}_{0}$. It must be clear which hypothesis gets rejected/accepted.
Allow equivalent wording.
M1 Writing or using $\operatorname{Po}(8)$. May be implied by correct critical region.
A1 allow $0 \leq X \leq 3$ or $\mathrm{CR} \leq 3$ or $X \leq 3$. Any letter may be used but not $\mathrm{P}(X \leq 3)$. This must be on its own.
B1 both hypotheses correct. Must use $\lambda$ or $\mu$.
One tail
$1^{\text {st }}$ M1 for writing or using $1-\mathrm{P}(X \leq 12)$ or writing $\mathrm{P}(X \leq 13)=0.9658$ or $\mathrm{P}(X \geq 14)=0.0342$. May be implied by correct CR.or probability $=0.0638$
A1 for 0.0638 or $X \geq 14$. Allow $X>13$. NB $\mathrm{P}(X \leq 12)=0.9362$ on its own scores M1A1
$2^{\text {nd }}$ M1 dependent on the $1^{\text {st }}$ M1 being awarded. For a correct statement based on the table below. Do not allow noncontextual conflicting statements eg "not significant" and "reject $\mathrm{H}_{0}$ ". Ignore comparisons.
$2^{\text {nd }} \mathrm{A} 1$ for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.

|  | $0.05<p<0.95$ | $p<0.05$ or $p>0.95$ |
| :--- | :--- | :--- |
| $2^{\text {nd }} \mathrm{M} 1$ | not significant/ accept $\mathrm{H}_{0} /$ Not in CR | significant/reject $\mathrm{H}_{0} /$ In CR |
| $2^{\text {nd }} \mathrm{A} 1$ | Insufficient evidence of an increase/change in the <br> rate/number | Sufficient evidence of an increase/change in the <br> rate/number of sales per month |

## Two tail

$1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leq 12)$ or writing $\mathrm{P}(X \leq 14)=0.9827$ or $\mathrm{P}(X \geq 15)=0.0173$. May be implied by correct CR.or probability $=0.0638$
A1 for 0.0638 or $X \geq 15$. Allow $X>14$. NB $\mathrm{P}(X \leq 12)=0.9362$ on its own scores M1A1
$2^{\text {nd }}$ M1 dependent on the $1^{\text {st }}$ M1 being awarded. For a correct statement based on the table below. Do not allow noncontextual conflicting statements eg "not significant" and "reject $\mathrm{H}_{0}$ ". Ignore comparisons.
$2^{\text {nd }} \mathrm{A} 1$ for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.

|  | $0.025<p<0.975$ | $p<0.025$ or $p>0.975$ |
| :--- | :--- | :--- |
| $2^{\text {nd }} \mathrm{M} 1$ | not significant/ accept $\mathrm{H}_{0} /$ Not in CR | significant/reject $\mathrm{H}_{0} /$ In CR |
| $2^{\text {nd }} \mathrm{A} 1$ | Insufficient evidence of an increase/change in the <br> rate/number of sales per month | Sufficient evidence of an increase/change in the <br> rate/number of sales per month |

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA030902 January 2012


Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

## edexcel

# Mark Scheme (Results) 

Summer 2012

GCE Statistics S2
(6684) Paper 1

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

## www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA033140
All the material in this publication is copyright
© Pearson Education Ltd 2012

## Summer 2012

6684 Statistics 2

## S2 Mark Scheme

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol ${ }^{\text {- }}$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\quad$ The answer is printed on the paper
- $\square$ The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

## Summer 2012

6684 Statistics S2
Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1(a) | $\begin{align*} \mathrm{P}(\mathrm{~L}>24) & =\frac{1}{15} \times 6 \\ & =\frac{2}{5} \text { or } 0.4 \mathrm{oe} \tag{2} \end{align*}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
| (b) | Let $X$ represent the number of sweets with $L>24$ |  |
|  | $X \sim \mathrm{~B}(20,0.4) \quad$ M | M1 |
|  |  | M1dep |
|  | $=1-0.4159$ |  |
|  | $=0.5841 \quad$ awrt $0.584 \quad$ Al | A1 |
|  |  | (3) |
| (c) | $\mathrm{P}($ both $X \geq 8)=(0.5841)^{2}$ M | M1 |
|  | $=0.341 \ldots$ | A1 ft |
|  |  | (2) |
|  |  | Total 7 |
|  | notes |  |
| 1(a) | M1 $\frac{1}{15} \times(6$ or 5.5 or 6.5 or $(30-24))$ or $1-\frac{1}{15}((24-15)$ or $(23.5-15)$ or $(24.5-15))$ |  |
| (b) | M1 using $\mathrm{B}(20$, "their (a)) |  |
|  | M1 dependent on $1^{\text {st }} \mathrm{M} 1$. Writing or use of $1-\mathrm{P}(X \leq 7)$ |  |
|  | NB Use of normal/normal approximation/ Poisson/uniform gets M0 M0 A0 |  |
| (c) | M1 (their(b) $)^{2}$ or $(0.58)^{2}$ or $(0.5841)^{2}$ or $(0.584)^{2}$ |  |
|  | A1ft -either awrt 0.34 or follow through their answer to part (b) must be to 2 sf or better. Note you will have to check this. |  |




| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4(a) | Let $X$ be the random variable the number of houses sold. $X \sim \operatorname{Po}(8)$ | B1 |
| (i) | $\begin{aligned} \mathrm{P}(X \leq 3)-\mathrm{P}(X \leq 2) & =0.0424-0.0138 \quad \text { or } \quad \frac{\mathrm{e}^{-8} 8^{3}}{3!} \\ & =0.0286 \end{aligned}$ | M1 A1 |
| (ii) | $\begin{aligned} \mathrm{P}(X>5) & =1-\mathrm{P}(X \leq 5) \\ & =1-0.1912 \\ & =0.8088 \end{aligned}$ | M1 A1 |
| (b) | Let $Y$ be the random variable $=$ the number of periods where more than 5 houses are sold $\begin{aligned} & Y \sim \mathrm{~B}(12,0.8088) \\ & \mathrm{P}(Y=9)=(0.8088)^{9}(1-0.8088)^{3} \frac{12!}{9!3!} \end{aligned}$ | M1 M1 |
|  | $\begin{equation*} =0.228 \quad \text { awrt } 0.228 \tag{3} \end{equation*}$ | A1 |
| (c) | $\mathrm{N}(20,20)$ | M1A1 |
|  | $\begin{align*} \mathrm{P}(X>25)= & 1-\mathrm{P}\left(Z \leq \frac{25.5-20}{\sqrt{20}}\right) \\ & =1-\mathrm{P}(Z \leq 1.23) \\ & =1-0.8907 \\ & =0.1093 / 0.1094 \tag{awrt 0.109} \end{align*}$ | M1,M1,A1 <br> A1 <br> (6) <br> Total 14 |
|  | Notes |  |
| (a) | 1st B1 for writing or using $\operatorname{Po}(8)$ in either (i) or (ii) |  |
| (i) | M1 writing or using $\mathrm{P}(X \leq 3)-\mathrm{P}(X \leq 2) \quad$ or $\frac{e^{-8} 8^{3}}{3!}$ |  |
| (ii) | M1 writing or using $1-\mathrm{P}(X \leq 5)$ |  |
| (b) | M1 writing or attempting to use $\mathrm{B}(12$, their (a(ii))) NB ft their a(ii) to at least 2sf M1 $\frac{1 \angle!}{9!3!}(\mathrm{a}(\mathrm{ii}))^{9}(1-\mathrm{a}(\mathrm{ii}))^{3} \quad$ allow ${ }^{12} \mathrm{C}_{3}$ or ${ }^{12} \mathrm{C}_{9}$ or 220 instead of $\frac{1 \angle!}{9!3!} \mathrm{NB} \mathrm{ft}$ their a(ii) to at least 1 sf but an expression must be seen (No use of tables) |  |
| (c) | $1^{\text {st }}$ M1 for writing or using a normal approximation <br> $1^{\text {st }}$ A1 for correct mean and sd (may be given if correct in standardisation formula) <br> $2^{\text {nd }}$ M1 Standardising using their mean and their sd and using [24.5, 25, 25.5, 26 or 26.5] and correct area by doing $1-\mathrm{P}(\mathrm{Z} \leq$ "their 1.23 " $)$ <br> NB if they have not written down a mean and sd then they need to be correct in the standardisa this mark. <br> $3^{\text {rd }} \mathrm{M} 1$ for attempting a continuity correction ( $26 \pm 0.5$ ) <br> $2^{\text {nd }}$ A1 for $\pm \frac{25.5-20}{\sqrt{20}}$ or $\pm$ awrt 1.2 or better. <br> $S C$ using $P(X<26.5 / 25.5)-P(X<25.5 / 24.5)$ can get M1A1 M0M1A0A0 | for finding ion to gain |




| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (a) |  | B1 <br> B1 <br> B1 <br> B1dep <br> 0.2,3,4,10 |
|  | $\mathrm{F}(x)=\left\{\begin{array}{cc} 0 & x<0 \\ \frac{x^{3}}{135} & 0 \leq x \leq 3 \\ \frac{x}{5}-\frac{2}{5} & 3<x<4 \\ \frac{x}{3}-\frac{x^{2}}{60}-\frac{2}{3} & 4 \leq x \leq 10 \\ 1 & x>10 \end{array}\right.$ $\begin{aligned} 1^{\text {st }} \text { M1 For } 0 \leq x \leq 3, \mathrm{~F}(x) & =\int_{0}^{x} \frac{t^{2}}{45} \mathrm{~d} t \\ & =\left[\frac{t^{3}}{135}\right]_{0}^{x} \end{aligned}$ <br> $2^{\text {nd }}$ M1 For $3<x<4, \mathrm{~F}(x)=\int_{3}^{x} \frac{1}{5} \mathrm{~d} t+\frac{1}{5} \quad$ or $\mathrm{F}(x)=\int \frac{1}{5} \mathrm{~d} x+\mathrm{C}$ and uses $\mathrm{F}(3)=\frac{1}{5}$ $=\left[\frac{t}{5}\right]_{3}^{x}+\frac{1}{5} \quad \frac{1}{5}=\left[\frac{3}{5}\right]+C$ <br> $3^{\text {rd }}$ M1 For $4 \leq x \leq 10, ~ \mathrm{~F}(x)=\int_{4}^{x} \frac{1}{3}-\frac{x}{30} \mathrm{dt}+\frac{2}{5}$ or $\mathrm{F}(x)=\int \frac{1}{3}-\frac{x}{30} \mathrm{~d} x+\mathrm{C}$ and uses $\begin{gathered} \mathrm{F}(4)=\frac{2}{5} \text { or } \mathrm{F}(10)=1 \\ \mathrm{~F}(x)=\left[\frac{t}{3}-\frac{t^{2}}{60}\right]_{4}^{x}+\frac{2}{5} \quad \frac{2}{5}=\frac{4}{3}-\frac{4^{2}}{60}+\mathrm{Cor} 1=\frac{10}{3}-\frac{10^{2}}{60}+\mathrm{C} \end{gathered}$ | M1A1 <br> M1A1 <br> M1A1 |
|  | Top line of $\mathrm{F}(x) \quad$ ie $0 \quad x<0$ <br> Bottom line of $\mathrm{F}(x)$ ie $1 \quad x>10$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ <br> (8) |
| (c) | $\begin{aligned} \mathrm{F}(8) & =\frac{8}{3}-\frac{8^{2}}{60}-\frac{2}{3} \\ & =\frac{14}{15}=0.933 \end{aligned}$ | M1 <br> A1 cso <br> (2) <br> Total 14 |




Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA033140 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com


Llywodraeth Cynulliad Cymru Welsh Assembly Government


Rewarding Learning

## edexcel "

## Mark Scheme (Results)

 January 2013GCE Statistics S2 (6684/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UA034852
All the material in this publication is copyright
© Pearson Education Ltd 2013

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.


## EDEXCEL GCE MATHEMATI CS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

## 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\quad$ The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

|  | 0 | 1 |
| :--- | :---: | :---: |
| aM |  | $\bullet$ |
| aA | $\bullet$ |  |
| bM1 |  | $\bullet$ |
| bA1 | $\bullet$ |  |
| bB | $\bullet$ |  |
| bM2 |  | $\bullet$ |
| bA2 |  | $\bullet$ |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1(a) | $n$ large <br> $p$ small | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ |
| (b) | Let $X$ be the random variable the number of letters delivered to the wrong house $X \sim \mathrm{~B}(1000,0.01)$ |  |
|  | $\mathrm{Po}(10)$ | B1 |
|  | $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$ | M1 |
|  | $=1-0.0103$ |  |
|  | $=0.9897$ | A1 |
|  |  | (3) |
|  |  | Total 5 |
|  | Notes |  |
| (a) | B1 Accept $n$ (the number of trials) large / high / big / $n>50$ (accept any number larger than 50) <br> B1 Accept $p$ (the probability) small / close to $0 / p<0.2$ ( accept any number less than 0.2 ). Do not accept low. <br> These must appear in part (a). |  |
| (b) | B1 writing or using $\operatorname{Po}(10)$ <br> M1 using a Poisson ( $\lambda$ need not equal 10) and for writing or using $1-\mathrm{P}(X \leq 3)$. (Do not accept writing $1-\mathrm{P}(X<4)$ unless they have used $1-\mathrm{P}(X \leq 3))$. <br> A1 0.9897 cao must be 4 dp |  |
|  | NB |  |
|  | An awrt 0.990 on its own gains B0M0A0 unless there is evidence that $\operatorname{Po(10)}$ is used. In which case it gets B1M1A0 <br> Using $\mathbf{B}(\mathbf{1 0 0 0}, \mathbf{0} .01)$ gives $\mathbf{0 . 9 8 9 9 2 7} \ldots$... and gains B0M0A0 |  |




(e) M1 either use of $\frac{(b-a)^{2}}{12}$ or $\mathrm{E}\left(Y^{2}\right)-[\mathrm{E}(Y)]^{2}$ :- they may use their part (d) for $\mathrm{E}\left(Y^{2}\right)$
(f) M1 using $\frac{1}{3 a}\left(\frac{8}{3}-a\right)=$ a probability or $\frac{1}{3 a}\left(4 a-\frac{8}{3}\right)=$ a probability

An answer of $\frac{8}{9}$ with no incorrect working gains M1A1A1




(c) $\quad$ M1 attempting to solve "their equations" simultaneously - either using rearranging and substitution or making one of the coefficients the 'same' (ignore sign) and either adding or subtracting. May be implied by correct values for $a$ and $b$
$1^{\text {st }} \mathrm{A} 1$ for 0.1
$2^{\text {nd }} \mathrm{A} 1$ for 0.04
(d) M1 writing or using $\int_{0}^{m}$ "their $a$ " + "their $b " x \mathrm{~d} x=0.5$ : limits not needed
$1^{\text {st }} \mathrm{A} 1$ correct integration for their " $a$ " and " $b$ "
NB the correct equation simplifies to $m^{2}+m-25=0$
A1 3.09 only. If they have both roots then they must select 3.09
(e) $\quad 1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$. They must compare their values for mean and median correctly. They only need to compare 2 of mean, median and mode. If they compare either the median or mean with the mode only then the value of the mode must be stated. They may draw a sketch that matches their values of ' $a$ ' and ' $b$ ' for $0 \leq x \leq 5$. It must not go below the $x$-axis This may be seen in part (a).
$2^{\text {nd }} \mathrm{B} 1$ dependent f.t. on the previous B being awarded.

Telephone 01623467467

## Fax 01623450481

Email publication.orders@edexcel.com
Order Code UA034852 January 2013


Llywodraeth Cynulliad Cymru Welsh Assembly Government

For more information on Edexcel qualifications, please visit our website www.edexcel.com

## edexcel

Mark Scheme (Results)
Summer 2013

## GCE Statistics 2 (6684/01R)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA037002
All the material in this publication is copyright
© Pearson Education Ltd 2012

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL GCE MATHEMATI CS

## General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

| Question <br> Number | Scheme Marks |
| :---: | :---: |
| 1. <br> (a) <br> (b) | $(1,1,1),(5,5,5),(1,5,5),(1,5,1)$  <br> $(1,1,1) ;(5,5,5) ;(1,5,5) ;(5,1,5) ;(5,5,1)(5,1,1) ;(1,5,1) ;(1,1,5)$ B 1 <br> $r: 0$ and 4  <br> $\mathrm{P}(R=0)=\frac{9}{27}$ or $\frac{1}{3} \quad \mathrm{P}(R=4)=\frac{18}{27}$ or $\frac{2}{3}$ B 1 |
|  | Notes |
| (a) | $1^{\text {st }} \mathrm{B} 1$ for any two of the triples <br> $2^{\text {nd }}$ B1 for all 8 cases. No incorrect extras - condone repeats. Allow $(1,5,5)(x 3)$ and $(1,1$, 5) (x 3) instead of writing all three cases down <br> B1 for both values of $r$ <br> M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for $r$ correctly e.g. for $r=0 ;\left(\frac{2}{3}\right)^{3}+\left(\frac{1}{3}\right)^{3}$ and for $r=4 ; 3 \times\left(\frac{1}{3}\right)^{2} \times\left(\frac{2}{3}\right)+3 \times\left(\frac{1}{3}\right) \times\left(\frac{2}{3}\right)^{2}$ Working must be shown. <br> A1 for both values of $r$ and their correct corresponding probabilities. Allow awrt 0.333 and 0.667 <br> NB Correct answer with no working will gain B1M0A0 |






| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6.8 | $\begin{aligned} & {[X=\text { the number of raisins in a mini-muffin] }} \\ & X \sim \operatorname{Po}(8) \\ & \text { e.g. } \mathrm{P}(X \leq 3)=0.0424, \mathrm{P}(X \leq 13)=0.9658 \text { so } \mathrm{P}(X \geq 14)=0.0342 \\ & \text { So } \mathrm{Critical} \text { Region is } X \leq 3 \text { or } X \geq 14 \\ & 0.0424+0.0342 \\ & \qquad=\underline{\mathbf{0 . 0 7 6 6}} \text { (or better) } \\ & \begin{array}{l} \left.\mathrm{H}_{o}: \lambda=8 \text { (or } \mu=80\right) \quad \mathrm{H}_{1}: \lambda>8(\text { or } \mu>80) \\ {[R=\text { no. of raisins in } 10 \text { muffins. } R \sim \mathrm{Po}(80) .] \text { Use } Y \sim \mathrm{~N}(80,80)} \\ \mathrm{P}(R \geq 95) \simeq \mathrm{P}(Y \geq 94.5) \\ \quad=\mathrm{P}\left(Z>\frac{94.5-80}{\sqrt{80}}\right) \\ \quad=\mathrm{P}(Z>1.62 \ldots)=1-0.9474=\text { awrt } \underline{\mathbf{0 . 0 5 3}} \end{array} \end{aligned}$ <br> Probability is greater than 0.05 so not significant (accept $\mathrm{H}_{0}$ ) <br> Insufficient evidence to support the bakery's claim <br> Or insufficient evidence of an increase in the (mean) number of raisins per muffin | B1 <br> M1 <br> A1 A1 <br> (4) <br> M1 <br> A1 <br> (2) <br> B1 <br> M1A1 <br> M1 <br> M1 <br> A1 <br> M1 <br> A1cso |
|  | Notes |  |
| (a) | B1 for Po(8) seen or implied by use <br> M1 for clear evidence of use of $\mathrm{Po}(8)$, may be implied by a correct CR (allow written as a probability statement) or a probability seen in part(b). If they give 3 and 14 <br> $1^{\text {st }}$ A1 for $X \leq 3$ or $0 \leq X \leq 3$ or $0,1,2,3$ or [0,3] Allow any letter <br> $2^{\text {nd }}$ A1 for $X \geq 14$ or $[14, \infty)$ condone [ $14, \infty$ ] Allow any letter <br> These A marks must be for statements with $X$ only - not in prob statements <br> M1 for showing they are adding together the two probabilities that correspond to their CR or allow M1 A1for correct answer <br> B1 for both hypotheses. Must be in terms of $\lambda$ or $\mu, 8$ or 80 can be swapped <br> $1^{\text {st }}$ M1 for normal approx <br> $1^{\text {st }} \mathrm{A} 1 \mathrm{E}(\mathrm{Y})=80$ and $\operatorname{Var}(Y)=80$ (or correct st. dev seen somewhere) <br> $2^{\text {nd }}$ M1 for use of a continuity correction 94.5 or 95.5 <br> $3^{\text {rd }}$ M1 Standardising using their mean and their sd, If they have not written down a mean and sd then these need to be correct here to award the mark. They must also use $94.5,95.5$ or 95 and find the correct area ie using $1-\mathrm{P}(\mathrm{Z} \leq$ "their 1.62 " $)$ <br> $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.053 or awrt 0.947 <br> $4^{\text {th }}$ M1 for a correct statement based on their probability and 0.05 <br> $3^{\text {rd }}$ A1 cso for a correct contextualised statement and a fully correct solution with no errors <br> seen. Need either bakery's claim <br> or <br> Raisins and muffin <br> NB If Found $\mathrm{P}(X=95)$ they can get B1 M1 A1 M0M0A0M0A0 |  |
| Question Number | Scheme | Marks |
| 7. |  |  |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| (a) | $X \sim \mathrm{~B}(20,0.2)$ | M1 A1 |
| (b) | $S=4 X-1(20-X) \quad S=5 X-20$ | $\begin{aligned} & \text { M1 } \\ & \text { A1cso } \end{aligned}$ |
|  |  | (2) |
| (c) | $\mathrm{E}(X)=4, \quad \operatorname{Var}(X)=3.2$ | B1, B1 |
|  | $\mathrm{E}(S)=5 \times 4-20=0, \quad \operatorname{Var}(S)=5^{2} \operatorname{Var}(X)=80$ | M1 A1 |
| (d) | $S \geq 20$ implies $5 X-20 \geq 20$ | M1 (4) |
|  | [So $5 X \geq 40] \quad X \geq 8$ | A1 |
|  | $\mathrm{P}(S \geq 20)=\mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7)$ | M1 |
|  | $=1-0.9679=\underline{\mathbf{0 . 0 3 2 1}}$ | A1 |
|  |  | (4) |
| (e) | [Let $C=$ no. Cameron gets correct. $C \sim \mathrm{~B}(100,0.4)] \quad Y \sim \mathrm{~N}\left(40, \sqrt{24}^{2}\right)$ $\mathrm{P}(C>50) \sim \mathrm{P}(Y>50.5)$ | M1A1 |
|  | $=\mathrm{P}\left(Z>\frac{50.5-40}{\sqrt{24}}\right)$ | M1 M1 |
|  | $=\mathrm{P}(Z>2.14 \ldots)=1-0.9838=0.0162 \text { or } 0.016044 . . \text { (awrt } \underline{\mathbf{0 . 0 1 6}})$ <br> N.B. exact Bin ( $0.01676 \ldots$..) Poisson approx (0.0526...) | A1 <br>  <br>  <br>  |
|  | Notes |  |
| (a) | M1 for "binomial" or $\mathrm{B}(\ldots$ <br> A1 for $n=20$ and $p=0.2$ |  |
| (b) | NB this is a 'show that' so working must be shown M1 $\quad$ for attempt at any correct expression for $S$ that uses 4 and - 1 (1 may not be A1cso $\quad$ for correct expression derived. No incorrect working seen and M1 scored. | seen) |
| (c) | $1^{\text {st }} \mathrm{B} 1 \quad$ for $\mathrm{E}(X)=4$ seen. Condone $\mathrm{E}(\mathrm{S})=4$. May be implied by correct $\mathrm{E}(\mathrm{S})$ or be calculation for $\mathrm{E}(\mathrm{S})$ <br> $2^{\text {nd }} \mathrm{B} 1$ for $\operatorname{Var}(X)=3.2$ seen. Condone $\operatorname{Var}(S)=3.2$. May be implied by correct V the calculation for $\operatorname{Var}(\mathrm{S})$ <br> M1 for a correct formula for $\mathrm{E}(S)$ or $\operatorname{Var}(S)$ - follow through their $\mathrm{E}(X)$ and $\operatorname{Var}(X$ by either answer being correct <br> A1 for 0 and 80 correctly assigned. | seen in the $\operatorname{ar}(\mathrm{S})$ or be seen in $X)$ may be implied |
| (d) | $1^{\text {st }}$ M1 for an attempt to solve the inequality for $X$ $2^{\text {nd }} \mathrm{M} 1$ for $1-\mathrm{P}(X \leq 7)$ |  |
| (e) | $1^{\text {st }}$ M1 for use of normal approx. and mean $=40$ |  |
|  | $1^{\text {st }} \mathrm{A} 1 \quad$ for Var $=24$ or st. dev $=\sqrt{24}$ May be implied by later work <br> $2^{\text {nd }}$ M1 49.5 or 50.5 <br> $3^{\text {rd }}$ M1 Standardising using their mean and their sd, If they have not written down a these need to be correct here to award the mark. They must also use $50.5,49.5$ or 50 a area ie using 1- $\mathrm{P}(\mathrm{Z} \leq$ "their 2.14 " $)$, <br> $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.016 | mean and sd then and find the correct |

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA037002 Summer 2013


Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Rewarding Learning

## edexcel

Mark Scheme (Results)
Summer 2013

GCE Statistics S2 (6684/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013
Publications Code UA036999
All the material in this publication is copyright
© Pearson Education Ltd 2013

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- $\quad$ There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL GCE MATHEMATI CS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
-     - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme


| 2(a) | $\mathrm{P}(X=1)=0.25 \mathrm{e}^{-0.25}=0.1947$ awrt 0.195 | M1A1 |
| :---: | :---: | :---: |
|  |  | (2) |
| 2(b) | $\begin{aligned} & X \sim \operatorname{Po}(1.5) \\ & \begin{aligned} \mathrm{P}(X>2) & =1-\mathrm{P}(X \leq 2) \\ = & 1-0.8088 \\ & =0.1912 \end{aligned} \end{aligned}$ <br> awrt 0.191 | B1 <br> M1 A1 |
|  |  | (3) |
| 2(c) | $\begin{aligned} & {[\lambda=300 \times 0.25=75]} \\ & \begin{aligned} & X \sim \mathrm{~N}(75,75) \\ & \mathrm{P}(X<90)=\mathrm{P}\left(X \leq \frac{89.5-75}{\sqrt{75}}\right) \\ &=\mathrm{P}(Z \leq 1.6743 . .) \\ &=\text { awrt } 0.953 \text { or } 0.952 \end{aligned} \end{aligned}$ | B1 B1 <br> M1M1 <br> A1 <br> (5) <br> Total 10 marks |
| Notes |  |  |
| $\begin{aligned} & \text { 2(a) } \\ & \text { 2(b) } \\ & \text { 2(c) } \end{aligned}$ | M1 $0.25 \mathrm{e}^{-0.25}$ o.e <br> B1 stating or using $\operatorname{Po}(1.5)$ <br> M1 stating or using $1-\mathrm{P}(X \leq 2)$ <br> $1^{\text {st }} \mathrm{B} 1$ for normal approximation and correct mean <br> $2^{\text {nd }} \mathrm{B} 1 \operatorname{Var}(X)=75$ or sd $=\sqrt{75}$ or awrt 8.66 (may be given if corre formula) <br> $1^{\text {st }}$ M1 using either 89.5 or 88.5 <br> $2^{\text {nd }}$ M1 Standardising using their mean and their sd, using [89.5, 8 <br> finding correct area <br> NB use of Poisson gives an answer of 0.9498 and gains no ma | in standardisation 5 or 89] and for s |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3(a) | $\begin{aligned} & X \sim \operatorname{Po}(7) \\ & \begin{aligned} \mathrm{P}(X>10) & =1-\mathrm{P}(X \leq 10) \\ & =1-0.9015 \\ & =0.0985 \end{aligned} \end{aligned}$ <br> awrt 0.0985 | B1 M1 <br> A1 <br> (3) |
| 3(b) | $\mathrm{P}(X>d)<0.05$ Or $\quad \mathrm{P}(X \geq d)<0.05$ <br> $\mathrm{P}(X \leq d)>0.95$ $\mathrm{P}(X<d)>0.95$ <br> $\mathrm{P}(X \leq 11)=0.9467$ $\mathrm{P}(X<12)=0.9467$ <br> $\mathrm{P}(X \leq 12)=0.9730$ $\mathrm{P}(X<13)=0.9730$ <br> Least number of games $=12$ Least number of games 13 |  |
| 3(c) | $\begin{array}{ll\|l} \hline \mathrm{H}_{0}: \lambda=1,(\mu=28) \mathrm{H}_{1}: \lambda>1(\mu>28) & \\ Y \sim \operatorname{Po}(28) \text { approximated by } \mathrm{N}(28,28) & \\ \begin{aligned} \mathrm{P}(Y \geq 36) & =\mathrm{P}\left(Z \geq \frac{35.5-28}{\sqrt{28}}\right) & 1.6449=\frac{x-0.5-28}{\sqrt{28}} \\ & =\mathrm{P}(Z \geq 1.42) & \\ & =0.0778 \text { or } 1.42<1.6449 & \text { CR } X \geq 37.2 \end{aligned} \end{array}$ <br> $0.0778>0.05$ so do not reject $\mathrm{H}_{0} /$ not significant. Not in CR There is no evidence that the average rate of sales per day has increased. | B1 <br> B1 <br> M1M1 <br> A1 <br> M1 <br> Alcso <br> (7) <br> Total 13 <br> marks |
|  | Notes |  |
| 3(a) 3(b) 3(c) | B1 stating or using $\operatorname{Po}(7)$ <br> M1 stating or using $1-\mathrm{P}(X \leq 10)$ <br> M1 using or writing $\mathrm{P}(X>d)<0.05$ or $\mathrm{P}(X<d)>0.95$ (condone $\geq$ instead of $>$ and $\leq$ instead of $<$ ) May be implied by correct answer. Different letters may be used. <br> $1^{\text {st }} \mathrm{A} 1 \mathrm{P}(X \leq 12) / \mathrm{P}(X<13)=$ awrt 0.973 or $\mathrm{P}(X \leq 11) / \mathrm{P}(X<12)=$ awrt 0.947 <br> May be implied by a correct answer <br> $2^{\text {nd }}$ A1 12 or 13 <br> NB An answer of 12/13 on its own with no working gains M1A1A1 <br> $1^{\text {st }} \mathrm{B} 1$ both hypotheses correct using $\lambda$ or $\mu$, and 1 or 28 <br> 2nd B1 for writing or using a normal approximation with correct mean and Var (may be given if sd correct in standardisation formula) <br> $1^{\text {st }} \mathrm{M} 1$ for use of a continuity correction 35.5 or 36.5 or $x \pm 0.5$ <br> $2^{\text {nd }}$ M1 Standardising using their mean and their sd. If they have not written down a mean and sd then these need to be correct here to award the mark. They must use [35.5, 36.5, 36, $x$ or $x \pm 0.5$ ] For CR must have $=$ awrt 1.64 or 1.65 <br> $1^{\text {st }} \mathrm{A} 1$ awrt 0.0778 or 0.9222 or the statement $1.42<$ awrt $1.65 / 1.64$ or CR $X \geq 37.2 / X>37.2$ <br> $3^{\text {rd }}$ M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. NB Non contextual contradicting statements gets M0 <br> $2^{\text {nd }}$ A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Need the words "rate/average number", <br> "sales" and "increased"oe <br> NB If found $\mathrm{P}(X=36)$ they can get B 1 B 10 M 0 A 0 M 0 A 0 |  |
| Question <br> Number | Scheme | Marks |



\begin{tabular}{|c|c|}
\hline \& \begin{tabular}{l}
\[
\mathrm{F}(2)=1,2+2 a+b=1
\] \\
Solving gives \(a=-\frac{3}{5}, b=\frac{1}{5}\) \\
Alt
\[
\begin{align*}
\& \mathrm{F}(2)-\mathrm{F}(1)=1,2+2 a+b-\frac{4}{10}-a-b=1  \tag{4}\\
\& a=-\frac{3}{5} \\
\& \mathrm{~F}(2)=1 \text { or } \mathrm{F}(1)=0 \\
\& 2-\frac{6}{5}+b=1 \text { or } \frac{4}{10}-\frac{3}{5}+b=0 \\
\& b=\frac{1}{5} \tag{4}
\end{align*}
\]
\end{tabular} \\
\hline 5(b) \& Differentiating cdf gives \begin{tabular}{rl|l}
\(\mathrm{f}(x)\) \& \(=\frac{3}{10} x^{2}+\frac{6}{10} x+a, \quad 1 \leq x \leq 2\) \\
\& \(=\frac{3}{10}\left(x^{2}+2 x-2\right)\) \& B1 cso \\
\end{tabular} \\
\hline 5(c) \& \[
\begin{align*}
\mathrm{E}(X) \& =\int_{1}^{2} \frac{3}{10}\left(x^{3}+2 x^{2}-2 x\right) \mathrm{d} x \\
\& =\frac{3}{10}\left[\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-x^{2}\right]_{1}^{2} \\
\& =\frac{13}{8} \tag{4}
\end{align*}
\] \\
\hline 5(d) \& \begin{tabular}{l|l|}
\(\mathrm{F}(1.425)=0.24355, \mathrm{~F}(1.435)=0.25227\) \& M1A1 \\
0.25 lies between \(\mathrm{F}(1.425)\) and \(\mathrm{F}(1.435)\) hence result. \& A1 (3) \\
\hline
\end{tabular} \\
\hline \& Notes \(\quad\) Total 12 marks \\
\hline 5(a)

5(b)

5(c) \& | $1^{\text {st }} \mathrm{M} 1 \quad$ using $\mathrm{F}(1)=0$. Clear attempt to form a linear equation for $a$ and $b$ |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ either $a=-0.6$ or $b=0.2$ Previous M must be awarded |
| $2^{\text {nd }} \mathrm{M} 1 \quad$ using $\mathrm{F}(2)=1$. Clear attempt to form a second linear equation for $a$ and $b$ |
| $2^{\text {nd }} \mathrm{A} 1 \quad$ if $1^{\text {st }} \mathrm{A} 1$ awarded then both $a$ and $b$ must be correct otherwise award if either $a=-0.6$ or $b=0.2$ |
| alt $1^{\text {st }} \mathrm{M} 1 \quad \mathrm{~F}(2)-\mathrm{F}(1)=1$. Leading to a value for $a: 1^{\text {st }} \mathrm{A} 1 \quad a=-0.6$ |
| $2^{\text {nd }} \mathrm{M} 1$ using $\mathrm{F}(2)=1$ or $\mathrm{F}(1)=0$. Leading to a value for $b: 2^{\text {nd }} \mathrm{A} 1 \quad b=0.2$ |
| NB correct values for $a$ and $b$ with no working scores no marks. |
| B1 They must differentiate and then factorise. cso |
| $1^{\text {st }}$ M1 for clear attempt to use $x \mathrm{f}(x)$ with an intention of integrating (Integral sign enough) Ignore limits. Must substitute in $\mathrm{f}(x)$ or "their $\mathrm{f}(x)$ ". |
| $2^{\text {nd }}$ M1d dependent on previous M being awarded for some correct integration... at least one correct term with the correct coefficient. |
| $1^{\text {st }} \mathrm{A} 1$ for fully correct (possibly unsimplified) integration. Ignore limits |
| $2^{\text {nd }}$ A1 Accept 1.63 and 1.625 or some other exact equivalent |
| M1 expression showing substitution of 1.425 or 1.435 into $\mathrm{F}(x)$ [or into $\mathrm{F}(x)-0.25$ ] |
| [or putting their $\mathrm{F}(x)=0.25$ and attempting to solve leading to $x=\ldots$..] May be implied by either pair of the correct answers as given below for the $1^{\text {st }} \mathrm{A} 1$ |
| $1^{\text {st }} \mathrm{A} 1$ awrt 0.244 and awrt 0.252 [or awrt -0.00645 and awrt 0.00227 ] [or $x=$ awrt 1.432] |
| $2^{\text {nd }} \mathrm{A} 10.25$ lies between $\mathrm{F}(1.425)$ and $\mathrm{F}(1.435)$ [or change in sign therefore root |
| between] [or "1.432" lies between 1.425 and 1.435 therefore root |
| between]. Statement must be true for their method | <br>

\hline
\end{tabular}

## Question

Number

6(a) |  | $X \sim \mathrm{~B}(20,0.25)$ | M 1 |
| :--- | :--- | :--- |
|  | $\mathrm{P}(X \geq 10)=1-0.9861=0.0139$ | A 1 |
|  | $\mathrm{P}(X \leq 1)=0.0243$ | A 1 |

|  | (0 | A1A1 |
| :---: | :---: | :---: |
| 6(b) | $\begin{align*} & \mathrm{H}_{0}: p=0.25 \\ & \mathrm{H}_{1}: p<0.25 \\ & X \sim \mathrm{~B}(20,0.25) \\ & \mathrm{P}(X \leq 3)=0.2252 \quad \text { or } \mathrm{CR} X \leq 1 \\ & \text { Insufficient evidence to reject } \mathrm{H}_{0}, \text { Accept } \mathrm{H}_{0} \text {, Not significant. } \\ & 3 \text { does not lie in the Critical region. } \\ & \text { No evidence that the changes to the process have reduced the } \\ & \text { percentage of defective articles (oe) } \tag{5} \end{align*}$ | B1 <br> M1A1 <br> M1d <br> A1cso <br> Total 10 marks |
|  | Notes |  |
| 6(a) | M1 using $\mathrm{B}(20,0.25)$ may be implied by a correct CR (allow written as a probability statement) <br> $1^{\text {st }}$ A1 awrt 0.0139 <br> $2^{\text {nd }}$ A1 awrt 0.0243 <br> $3^{\text {rd }}$ A1 $X \leq 1$ or $0 \leq X \leq 1$ or [ 0,1$]$ or 0,1 or equivalent statements <br> $4^{\text {th }} \mathrm{Al} \quad X \geq 10$ or $10 \leq X \leq 20$ or $10,11,12,13,14,15,16,17,18,19,20$ or $[10,20]$ or equivalent statements <br> NB These two A marks must be for statements with $X$ (any letter) only - not in probability statements and $\mathbf{S C}$ for CR written as $1 \geq X \geq 10$ gets A1 A0 <br> B1 both hypotheses with $p$ <br> $1^{\text {st }} \mathrm{M} 1$ using $\mathrm{B}(20,0.25)$ and finding $\mathrm{P}(X \leq 3)$ or $\mathrm{P}(X \geq 4)$ may be implied by a correct CR <br> $1^{\text {st }} \mathrm{A} 10.2252$ (allow 0.7748 ) if not using CR or CR $X \leq 1$ or $X<2$ <br> $2^{\text {nd }}$ M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non contextual statements) <br> A1cso Conclusion must contain the words changes/new process oe, reduced oe number/percentage oe, and defective articles/defectives. There must be no incorrect working seen. |  |
| 6(b) |  |  |



Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036999 Summer 2013


Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com


Rewarding Learning

## edexcel

## Mark Scheme (Results)

## January 2014

Pearson Edexcel International Advanced Level

Statistics 2 (WST02/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

## www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037876
All the material in this publication is copyright
© Pearson Education Ltd 2014

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.


## 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
-     - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded $A$ marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1(a) | Let $X=$ the number of leaf cuttings successfully taking root $X \sim \mathrm{~B}(10,0.05)$ | B1 |
| (i) | $\begin{aligned} \mathrm{P}(X=1) & =\mathrm{P}(X \leqslant 1)-\mathrm{P}(X=0) \quad \text { or }{ }^{10} C_{1} \times 0.05 \times 0.95^{9} \\ & =0.9139-0.5987 \\ & =0.3152 \end{aligned}$ $\text { awrt } 0.315$ | M1 |
| (ii) | $\begin{aligned} \mathrm{P}(X>2) & =1-\mathrm{P}(X \leqslant 2) \\ & =1-0.9885 \\ & =0.0115 \end{aligned}$ <br> awrt 0.0115 | M1 A1 |
| 1(b) | $Y \sim \operatorname{Po}(8)$ | B1 |
|  | $\mathrm{P}(Y \geqslant 10)=1-\mathrm{P}(Y \leqslant 9)$ | M1 |
|  | $=1-0.7166$ |  |
|  | $=0.2834 \quad$ awrt 0.283 |  |
|  |  | (3) |
|  |  | Total (8) |
| Notes |  |  |
| (a)(i)(ii)(b) | B1 use of $\mathrm{B}(10,0.05)$. May appear in (i) or (ii) or may be implied |  |
|  | M1 writing or using $\mathrm{P}(X \leqslant 1)-\mathrm{P}(X=0)$ or ${ }^{n} C_{1} \times p \times(1-p)^{n-1} \quad(0<p<1)$ |  |
|  | M1 writing or using $1-\mathrm{P}(X \leqslant 2)$ |  |
|  | B1 writing or using $\operatorname{Po}(8)$ or writing or using $\mathrm{N}(8,7.6)$ |  |
|  | M1 writing or using $1-\mathrm{P}(Y \leqslant 9)$ or for M1 for $\mathrm{P}\left(\mathrm{Z}>\frac{9.5-8}{\sqrt{7.6}}\right)$ <br> A1 for awrt 0.283 from poisson or an answer in the range $(0.293,0.295)$ from normal |  |
|  | NB using binomial, $\mathrm{P}(X \geqslant 10)=0.280125 \ldots$..scores B0M0A0 |  |
|  | Answer only 0.28 or awrt 0.280 scores B0M0A0 <br> Answer only awrt 0.283 scores B1M1A1 <br> Answer only in the range $(0.293,0.295)$ B1M1A1 |  |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 2(a) <br> (b) <br> (c) | List of all the customers (who eat in the restaurant) | B1 (1) |
|  | Customer(s) (who ate in the restaurant) | B1 (1) |
|  | Advantage: more/total accuracy, unbiased | B1 |
|  | Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included <br> Let $X=$ the number of customers who would like more choice on the menu. | B1 (2) |
| (d) | $\mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p>0.3$ | B1 |
|  | $X \sim \mathrm{~B}(50,0.3)$ | M1 |
|  | $\mathrm{P}(X \geqslant 20)=1-\mathrm{P}(X \leqslant 19) \quad \text { or } \quad \text { CR } \mathrm{P}(X \leqslant 20)=0.9522$ | M1 |
|  | = 1-0.9152 $\mathrm{P}(X \geqslant 21)=0.0478$ |  |
|  | $=0.0848$ ( $X \geqslant 21$ | A1 |
|  | Do not reject $\mathrm{H}_{0} /$ not significant/20 is not in critical region | M1 |
|  | The percentage of customers who would like more choice on the menu is not mo than Bill believes. <br> or <br> There is no evidence to reject Bill's belief. |  |
|  |  | A1cso |
|  |  | (6) |
|  |  | Total (10) |
| Notes |  |  |
| (a) | B1 Need the idea of list/register/database and 'customer(s)' <br> Do not allow customer's opinions. <br> 'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers' |  |
| (b) | B1 customer(s) |  |
| (c) | If not labelled, assume the response refers to a census. $1^{\text {st }} \mathrm{B} 1$ is for the advantage and $2^{\text {nd }} \mathrm{B} 1$ is for the disadvantage. |  |
| (d) | B1 need both hypotheses with $p$ M1 using $\mathrm{B}(50,0.3)$ |  |
|  | M1 for $1-\mathrm{P}(X \leqslant 19)$ or |  |
|  | M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Must mention 'customers' and 'choice' or 'Bill' and 'belief'. |  |
|  | NB P $(X=20)$ can score B1M1M0A0M0A0 | NB normal approximation gives $0.082(457 \ldots)$ and loses all A marks |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3(a) | $\frac{1}{6} a(a+1)=0.6$ $\begin{aligned} a^{2}+a-3.6 & =0 \\ a & =\frac{-1 \pm \sqrt{1+4 \times 3.6}}{2} \\ & =1.462 \ldots \end{aligned}$ $\begin{equation*} \mathrm{a}=1.46 \text { only } \tag{3} \end{equation*}$ | M1 <br> M1 <br> A1 |
| 3(b) | $\mathrm{f}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{~F}(x)=\frac{1}{3} x+\frac{1}{6}$ | $\begin{aligned} & \text { M1A1 } \\ & \text { M1 } \end{aligned}$ |
| (i) | $\begin{aligned} \mathrm{E}(X) & =\int_{0}^{2} x\left(\frac{1}{3} x+\frac{1}{6}\right) \mathrm{d} x \\ & =\left[\frac{x^{3}}{9}+\frac{x^{2}}{12}\right]_{0}^{2} \end{aligned}$ | A1 A1 |
| (ii) | $\operatorname{Var}(X)=\int_{0}^{2} x^{2}\left(\frac{1}{3} x+\frac{1}{6}\right) \mathrm{d} x-\left(\frac{11}{9}\right)^{2}$ | M1 |
|  | $=\left[\frac{x^{4}}{12}+\frac{x^{1}}{18}\right]_{0}-\left(\frac{1}{9}\right)$ | A1ft |
|  | $=\frac{23}{81} \quad$ awrt 0.284 | A1 |
|  |  | (8) |
|  |  | Total (11) |
| Notes |  |  |
| (a) | M1 putting $\mathrm{F}(x)=0.6$ or $1-0.4$ <br> M1 attempting either completing the square or quadratic formula (one slip allowed) (condone + instead of $\pm$ ) <br> Must set $\mathrm{f}(a)=0.6$ or $\mathrm{f}(a)=0.4$ to score this mark. <br> May be implied by implied by awrt 1.46 or awrt -2.46 <br> A1 for 1.46 only (must reject other root if stated) (condone awrt 1.46) |  |
| (b) | $1^{\text {st }} \mathrm{M} 1$ attempting to differentiate $\mathrm{F}(x)$ at least one $x^{n} \rightarrow x^{n-1}$ $2^{\text {nd }}$ M1 for intention to use $\int_{0}^{2} x \mathrm{f}(x) \mathrm{d} x$ using their $\mathrm{f}(x)$ which must be a changed function from $\mathrm{F}(x)$. <br> No need for limits <br> $2^{\text {nd }}$ A1 correct integration (may be unsimplified) |  |
| (i) |  |  |
| (ii) | $3^{\text {rd }}$ M1 for intention to use $\int x^{2} \mathrm{f}(x) \mathrm{d} x-\mu^{2}$ using their $\mathrm{f}(x)$ which must be a changed function from $\mathrm{F}(x)$. No need for limits. This may be seen on separate lines. Must substitute their value of $\mu / \mathrm{E}(X)$ $4^{\text {th }}$ Alft correct integration. Ft their $\mathrm{E}(X)$. |  |






| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7 | $\begin{aligned} & \frac{64.5-\mu}{\sigma}=0.75 \\ & \frac{52.5-\mu}{\sigma}=-1.25 \\ & 64.5-\mu=0.75 \sigma \\ & 52.5-\mu=-1.25 \sigma \\ & \sigma=6 \\ & \mu=60 \\ & n p=60 \\ & n p(1-p)=36 \\ & 1-p=0.6 \\ & p=0.4 \\ & n=150 \end{aligned}$ | B1 M1 M1 <br> A1 <br> A1 <br> dM1 <br> A1 <br> A1 <br> M1 <br> M1 <br> A1 <br> A1 <br> (12) <br> Total (12) |
| Notes |  |  |
|  | B1 $\pm 0.75$ and $\pm 1.25$ (or better) seen <br> $1^{\text {st }}$ M1 $64 \pm 0.5$ or $52 \pm 0.5$ <br> $2^{\text {nd }} \mathrm{M} 1$ standardising either using 64,65 or $64 \pm 0.5$ or 52,53 or $52 \pm 0.5$ with $\mu$ and $\sigma$ or $n p$ and $\sqrt{n p(1-p)}$ (need not be set equal to a $z$-value) <br> $1^{\text {st }} \mathrm{A} 1$ for $\frac{64.5-\mu}{\sigma}=0.75$ (with compatible signs) <br> $2^{\text {nd }} \mathrm{A} 1$ for $\frac{52.5-\mu}{\sigma}=-1.25$ (with compatible signs) <br> $3^{\text {rd }} \mathrm{M} 1$ solving simultaneous equations dependent on $2^{\text {nd }} \mathrm{M} 1$. Must attempt to eliminate $\mu$ or $\sigma \underline{\text { or }} n p$ or $\sqrt{n p(1-p)}$ <br> $3^{\text {rd }} \mathrm{A} 1 \sigma=6$ <br> $4^{\text {th }} \mathrm{A} 1 \mu=60$ <br> $4^{\text {th }}$ M1 using $\mu=n p$ (may be awarded at any stage in the working) <br> $5^{\text {th }} \mathrm{M} 1$ using $\sigma=\sqrt{n p(1-p)}$ (may be awarded at any stage in the working) |  |

## edexcel ${ }^{\text {iti }}$

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Statistics 2
(6684/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040123
All the material in this publication is copyright
© Pearson Education Ltd 2014

## General Marking Guidance

- $\quad$ All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## PEARSON EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper or ag- answer given
-     - or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (a) | $\begin{aligned} \int_{0}^{9} c\left(81-t^{2}\right) \mathrm{d} t & =1 \\ c\left[81 t-\frac{t^{3}}{3}\right]_{0}^{9} & =1 \\ c\left[81 \times 9-\frac{9^{3}}{3}\right] & =1 \\ 486 c & =1 \\ c & =\frac{1}{486} \end{aligned}$ | M1 <br> A1 <br> M1d <br> A1cso |
| (b) | $\begin{aligned} \mathrm{F}(t) & =\frac{1}{486} \int_{0}^{t} 81-x^{2} \mathrm{~d} x \\ & =\frac{1}{486}\left[81 t-\frac{x^{3}}{3}\right]_{0}^{t} \\ & =\frac{t}{6}-\frac{t^{3}}{1458} \\ \mathrm{~F}(t) & =\left\{\begin{array}{cc} 0 & t<0 \\ \frac{t}{6}-\frac{t^{3}}{1458} & 0 \leq t \leq 9 \\ 1 & t>9 \end{array}\right. \end{aligned}$ | M1 <br> A1cso <br> (2) |
| (c) | $\begin{aligned} \mathrm{P}(T>3) & =1-\left(\frac{3}{6}-\frac{3^{3}}{1458}\right) \\ & =\frac{14}{27} \text { or awrt } 0.519 \end{aligned}$ | M1 <br> A1 |
| (d) | $\begin{aligned} \mathrm{P}(T>7 \mid T>3) & =\frac{0.068587}{0.5185} \\ & =\frac{25}{189} \text { or awrt } 0.132 \end{aligned}$ | M1A1ft <br> A1 |
| (e) | ${ }^{3} C_{2}(0.5185)^{2}(1-0.5185)=\frac{2548}{6561}$ or awrt $0.388 / 0.387$ | M1A1ftA1 <br> (3) <br> [14] |




\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }^{\text {a }}\) \\
\hline \begin{tabular}{l}
4. (a) \\
(i) \\
(ii)
\end{tabular} \&  \\
\hline (b) \& \begin{tabular}{rl|l}
\(1-\mathrm{P}(0)\) \& \(=0.8\) or \(\mathrm{P}(0)=0.2\) \& M 1 \\
\((1-p)^{20}\) \& \(=0.2\) \& \\
\(1-p\) \& \(=0.9227\) \& \\
\(p\) \& \(=0.0773\) \& A1 \\
\(\frac{3}{200}(90-x)\) \& \(=0.0773\) \& M1 \\
\(x\) \& \(=84.84\) \& \\
\(x\) \& \(=85\) \& A1cao (4)
\end{tabular} \\
\hline (c) \& \begin{tabular}{l|l}
\(X-\) successes \(\sim \mathrm{B}(100,0.975)\) \& B1 \\
\(Y-\) not successes \(\sim \mathrm{B}(100,0.025)\) \& M1A1 \\
\(Y \sim \mathrm{Po}(2.5)\) \& M1A1 (5) \\
\(\mathrm{P}(Y \leq 5)=0.958\) \&
\end{tabular} \\
\hline \& Notes [14] \\
\hline (a)
(i)
(ii)
(b)

(c) \& | B1 writing or using $p=0.75$ or $p=0.25$ anywhere in (a)(i) or (a)(ii) |
| :--- |
| M1 writing or using $(p)^{6}(1-p)^{4}{ }^{10} C_{6}$ or writing for $p=0.75, \mathrm{P}(X \leq 6)-(X \leq 5)$ |
| or for $p=0.25, \mathrm{P}(X \leq 4)-\mathrm{P}(X \leq 3)$ or correct answer. |
| M1 writing $\mathrm{B}(10,0.75)$ and writing or using $\mathrm{P}(X=8)+\mathrm{P}(X=9)+\mathrm{P}(X=10)$ oe |
| or writing $\mathrm{B}(10,0.25)$ and writing or using $\mathrm{P}(Y \leq 2)$. |
| Using correct Binomial must be shown by $(0.75)^{n}(0.25)^{10-n}$ or a correct answer. |
| M1 for writing or using $1-\mathrm{P}(0)=0.8$ or $\mathrm{P}(0)=0.2$ or $(1-p)^{20}=0.2$. Allow any inequality sign. |
| A1 awrt 0.0773 or awrt 0.923. |
| M1 subst in $\frac{3}{200}(90-x)$ for $p$ NB this may be substituted in earlier for $p$. |
| Allow for $\frac{3}{200}(90-x)=k$ where $0<k<1 k \neq 0.8$ or 0.2 Allow any inequality sign |
| A1 condone $x \geq 85$. Do not allow $\mathrm{x} \leq 85$. |
| B1 writing or using 0.975 or 0.025 , may be implied by $\mathrm{Po}(2.5)$ |
| M1 using Po approximation |
| A1 Po(2.5) |
| M1 writing or using $\mathrm{P}(Y \leq 5)$ |
| A1 awrt 0.958 |
| SC use of normal approximation can get B1 M0A0M1A0 |
| B1 writing or using 0.975 or 0.025 implied by normal with mean 97.5 or answer of 0.973 |
| M1 for awrt 0.973 | <br>

\hline
\end{tabular}

| Question Number | Scheme Marks |
| :---: | :---: |
| 5.(a) | $n$ is large and $p$ close to 0.5 (2) |
| (b) | There would be no pea seeds left $\quad 1$B1 |
| (c) | $\mathrm{H}_{0}: p=0.55 \mathrm{H}_{1}: p \neq 0.55$ B1 (1) |
| (d) |  |
|  | Notes |
| (a) <br> (b) <br> (c) <br> (d) | B1 accept $n>50$ (or any number bigger than 50) <br> B1 $p$ close to 0.5 <br> NB Do not accept $n p>5, n q>5$. <br> Must have the idea of no peas left. They must mention either pea or seeds. <br> B1 both hypotheses correct. Must use $p$ or $\pi$ and 0.55 oe. Accept the hypotheses in part (d). <br> B1 correct mean and Var, may be seen in the standardiation formula as 121 and $\sqrt{54.45}$ or <br> 7.38 to 2 dp or implied by a correct answer <br> M1 for attempting a continuity correction (Method 1:135/85 $\pm 0.5 /$ Method 2: $x \pm 0.5$ ) <br> M1 for standardising using their mean and their standard deviation and using either <br> Method $1[134.5,135,135.5,85,85.5$ or 84.5 accept $\pm$ z.] Method $2[(x \pm 0.5)$ and equal to a $\pm z$ value] <br> A1 correct $z$ value awrt $\pm 1.83$ or $\pm \frac{134.5-121}{\sqrt{54.45}}\left(\frac{85.5-99}{\sqrt{54.45}}\right)$ or $\pm \frac{x-0.5-121}{\sqrt{54.45}}=1.96$ $\left( \pm \frac{x+0.5-99}{\sqrt{54.45}}=1.96\right) \text { or(allow } 1.6449 \text { if } 1 \text { tail test in (c)) }$ <br> A1 awrt $0.0336 / 0.0337$ or awrt 136 (allow 126 if one tail test in (c)) or a comparison of awrt1.83 with 1.96 (1.6449) <br> M1 A correct statement. Accept $\mathrm{H}_{0}$, oe if a 2-tailed test in (c), reject $\mathrm{H}_{0}$, oe if a 1-tailed test in (c). Allow for a correct contextual statement. Do not allow contradictions of noncontextual statements. <br> A1 A correct contextual statement to include words in bold/underlined for a 2-tailed test. <br> This is not a follow through mark. <br> NB if finding $\mathrm{P}(X=135)$ they can get B 1 M 1 M 1 A 0 A 0 M 0 A 0 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6. <br> (a) | $\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} \frac{2 x^{2}}{9} \mathrm{~d} x+\int_{1}^{4} \frac{2 x}{9} \mathrm{~d} x+\int_{4}^{6} \frac{2 x}{3}-\frac{x^{2}}{9} \mathrm{~d} x \\ & =\left[\frac{2 x^{3}}{27}\right]_{0}^{1}+\left[\frac{2 x^{2}}{18}\right]_{1}^{4}+\left[\frac{x^{2}}{3}-\frac{x^{3}}{27}\right]_{4}^{6} \\ & =\left[\frac{2}{27}\right]+\left[\frac{32}{18}-\frac{2}{18}\right]+\left[4-\frac{80}{27}\right] \\ & =2 \frac{7}{9} \text { or awrt } 2.78 \end{aligned}$ | M1 <br> A1 <br> M1d <br> A1 <br> (4) |
| (b) | $\mathrm{F}(x)=\left\{\begin{array}{cc} 0 & x<0 \\ \frac{x^{2}}{9} & 0 \leq x \leq 1 \\ \frac{2 x}{9}-\frac{1}{9} & 1<x<4 \\ \frac{2 x}{3}-\frac{x^{2}}{18}-1 & 4 \leq x \leq 6 \\ 1 & x>6 \end{array}\right.$ <br> $1^{\text {st }}$ M1 For $1<x<4, F(x)=\int_{1}^{x} \frac{2}{9} \mathrm{~d} x+\frac{1}{9}$ $2^{\text {nd }}$ M1 For $4 \leq x \leq 6, \mathrm{~F}(x)=\int_{4}^{x} \frac{2}{3}-\frac{x}{9} \mathrm{~d} x+\frac{7}{9}$ or use +C and $\mathrm{F}(6)=1$ | B1 <br> M1A1 <br> M1 A1 <br> B1 |
| (c) | $\begin{aligned} & \mathrm{F}(x)=0.5 \\ & \frac{2 m}{9}-\frac{1}{9}=0.5 \\ & m=2.75 \end{aligned}$ | M1 <br> Alft <br> A1 <br> (3) |
| (d) | Median < mean therefore positive skew Or Mean $\approx$ median therefore no skewness | M1A1cao <br> (2) <br> [15] |



## edexcel :

## Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S2R (6684/01R)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040126
All the material in this publication is copyright
© Pearson Education Ltd 2014

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## PEARSON EDEXCEL GCE MATHEMATI CS

## General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of $M$ marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper or ag- answer given
- $\square$ or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.



| Question | Scheme | Marks |
| :---: | :---: | :---: |
| 3. (a) | $X \sim \operatorname{Po}(9)$ | M1A1 |
|  |  | (2) |
| (b) | $\mathrm{P}(X>7)=1-\mathrm{P}(X \leq 7)$ | M1 |
|  | $=[1-0.3239]=0.6761$ | A1 |
|  |  | (2) |
| (c) | [ $Y=$ no. of accidents in a month] $\quad Y \sim \mathrm{Po}(1.5)$ |  |
|  | $\mathrm{P}(Y \geq 1)=1-\mathrm{P}(Y=0)$ | M1 |
|  | $=[1-0.2231]=0.7769(=0.777(3 \mathrm{dp}))^{*}$ | Alcso |
|  |  | (3) |
| (d) | [ $A=$ no. of months with at least one accident] $\quad A \sim \mathrm{~B}(6,0.777)$ | M1 |
|  | $\mathrm{P}(A=4)=\binom{6}{4}(0.777)^{4}(0.223)^{2}$ | M1 |
|  | $=0.2719 \ldots \quad$ awrt 0.272 | A1 |
|  |  | (3) |
|  |  | (10) |
|  | Notes |  |
| (a) | M1 for Poisson (accept Po). Condone P(9) |  |
|  | A1 for mean of 9 |  |
| (b) | M1 for writing $1-\mathrm{P}(X \leq 7)$. This may be implied by $1-0.3239$ or a corre A1 for awrt 0.676 | answer |
| (c) | B1 Po(1.5) written or used |  |
|  | M1 writing or using $1-\mathrm{P}(Y=0)$ or $1-\mathrm{P}(Y \leq 0)$ or 1- $e^{-\lambda}$ [may not be $Y$ ] |  |
|  | A1 for at least ( $1-0.223$ ) or better. No need for final comment.* answer does not imply all three marks | en so 0.777 |
| (d) | $1^{\text {st }} \mathrm{M} 1$ for identifying binomial with $n=6$ and $p=0.777$ or better. Condone use of $p=$ 0.223 . <br> May be implied by $(p)^{4}(1-p)^{2} p=$ awrt 0.777 or awrt 0.223 <br> $2^{\text {nd }} \mathrm{M} 1$ Must have ${ }^{6} \mathrm{C}_{4}(0.777)^{4}(1-0.777)^{2}$ <br> A1 for awrt 0.272 |  |
|  |  |  |



| Question | Scheme | Marks |
| :---: | :---: | :---: |
| 5. (a) | $\mathrm{H}_{0}: \lambda=\frac{1}{8}($ or $\lambda=5) \quad \mathrm{H}_{1}: \lambda \neq \frac{1}{8} \quad($ or $\lambda \neq 5) \quad$ allow $\lambda$ or | B1 |
|  | $X \sim \operatorname{Po}(5), \mathrm{P}(X \leq 1)=0.0404$ or $\mathrm{P}(X \geq 10)=0.0318$ or $\mathrm{P}(X \geq 9)=0.0681$ Critical Regions: $\quad X<1$ or $X>10$ | M1 |
|  | Critical Regions. |  |
|  | $0.0404+0.0318=0.0722$ (or 7.22\% significance lev | M1A1 |
|  | $\mathrm{H}_{0}: \lambda=\frac{1}{8}($ or $\lambda=25) \quad \mathrm{H}_{1}: \lambda<\frac{1}{8} \quad($ or $\lambda<25) \quad$ allow $\lambda$ or $\mu$ | B1 |
|  | [ $Y=$ no. of defects in 200m of wallpaper] $Y \sim \operatorname{Po}(25) \quad Y \approx \sim \mathrm{~N}\left(25, \sqrt{25}^{2}\right.$ | M1A1 |
|  | $\mathrm{P}(Y \leq 19) \approx \mathrm{P}\left(Z<\frac{19.5-25}{\sqrt{25}}\right) \quad \text { or } \pm \frac{x-0.5-25}{5}=1.96$ | M1M1 |
|  | $=[\mathrm{P}(Z<-1.1)]=0.1357$ (or 0.13566... from calc) $\quad x=35.3$, |  |
|  | [ $>0.05$ ] not significant, there is insufficient evidence to support Thomas' claim. | A1cso |
|  | Or The number/rate/amount of defects is not decreased/less/reduced | (7) |
|  | Notes |  |
| (a) | B1 for suitable hypotheses |  |
|  | M1 for correct use of $\operatorname{Po}(5)$. Award if one relevant probability is seen or | orrect CR. |
|  | Allow if a correct CR written as a Probability statement |  |
|  | $1^{\text {st }}$ A1 for $X \leq 1$ or $X<2$ or $0<X<2$ or $0 \leq X<2$ or $0<X \leq 1$ oe. Allow any $2^{\text {nd }}$ A1 for $X \geq 10$ or $X>9$ or $10 \leq x \leq 40$ or $9<x \leq 40$ oe. Allow any lett |  |
|  | Ignore any $\cup$ or $\cap$ signs |  |
|  | Do not allow CR written as probability statements |  |
| (b) | M1 for adding their probabilities of 'their' critical regions if sum gives a less than 1 or award if a correct answer given A1 for awrt 0.0722 (o.e) | obability |
| (c) | B1 for suitable hypotheses <br> $1^{\text {st }}$ M1 for normal approximation <br> $1^{\text {st }} \mathrm{A} 1$ for mean $=25$ and variance $=25$ or sd $=5$ may be seen in the standardiation formula or implied by a correct answer <br> $2^{\text {nd }}$ M1 for attempting a continuity correction (Method 1:19 $\pm 0.5 /$ Method 2:x $\pm 0.5$ ) <br> $3^{\text {rd }} \mathrm{M} 1$ for standardising using their mean and their standard deviation and using either <br> Method $1[19.5,19,18.5$ accept $\pm z$.] Method $2[(x \pm 0.5)$ and equal to a $\pm z$ value] <br> $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.136 or 35.3 or $-1.1>-1.96$ <br> $3^{\text {rd }} \mathrm{A} 1$ for a correct contextualised conclusion. cao for a one tailed test, must come from correct working. Condone incorrect hypotheses. <br> NB if finding $\mathrm{P}(X=19)$ ie $\mathrm{P}(X \leq 19.5)-\mathrm{P}(X \leq 18.5)$ they can get B1 M1 A1M1 M1 A0 A0 |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Question | Scheme | Marks |
| :---: | :---: | :---: |
| 6. (a) | $\begin{align*} & \frac{d^{2}}{2}-\frac{d^{4}}{16}=\frac{1}{2} \\ & {\left[d^{4}-8 d^{2}+8=0 \Rightarrow\right] 8 }=\left(d^{2}-4\right)^{2} \text { or } d^{2}=\frac{8 \pm \sqrt{64-32}}{2} \\ & d^{2}=4-\sqrt{8} \\ & d=\sqrt{4-\sqrt{8}}=1.08239 \ldots \tag{awrt 1.08} \end{align*}$ | M1 <br> M1 <br> M1d <br> A1 <br> (4) |
| (b) | $\begin{aligned} & \mathrm{f}(d)=d-\frac{d^{3}}{4} \\ & {\left[\mathrm{f}^{\prime}(d)=0 \Rightarrow\right] \quad 1-\frac{3 d^{2}}{4}=0} \end{aligned}$ | M1 <br> M1A1 |
|  | $\begin{align*} & {\left[d^{2}=\frac{4}{3} \text { so }\right] d=1.154 \ldots} \\ & \qquad \mathrm{f}^{\prime \prime}(d)=-\frac{6 d}{4}<0 \text { so } \max \tag{5} \end{align*}$ | A1 B1 |
| (c) | $\mathrm{P}(D<1)=\left[\frac{1}{2}-\frac{1}{16}\right]=\frac{7}{16}$ | B1 |
|  | $\text { Number of children }=80 \times \frac{7}{16},=35$ | M1, A1 |
|  |  | $\begin{array}{r} \text { (3) } \\ \text { (12) } \\ \hline \end{array}$ |
|  | Notes |  |
| (a) | $1^{\text {st }} \mathrm{M} 1 \quad$ for forming this equation based on $\mathrm{F}(d)=0.5$ oe <br> $2^{\text {nd }}$ M1 for attempting to solve (complete the square or use formula) -must be their equation <br> $\mathrm{d} 3^{\text {rd }} \mathrm{M} 1 \quad$ for square rooting to get $d=\ldots$. Do not award for $d=$ awrt1.17 Dep previous M being awarded. | correct for <br> ndent on |
|  | $1^{\text {st }} \mathrm{M} 1$ for attempting to find $\mathrm{f}(d)$. Some correct differentiation. $x^{n} \rightarrow x^{n-1}$ <br> $2^{\text {nd }}$ M1 for attempting $\mathrm{f}^{\prime}(d)$ and setting it $=0$ Some correct differentiation $\mathrm{x}^{\mathrm{n}}$ to <br> $1^{\text {st }} \mathrm{A} 1$ for a correct equation for $d$ <br> $2^{\text {nd }} \mathrm{A} 1$ for awrt 1.15 or 1.155 or $\sqrt{\frac{4}{3}}$ or $\frac{2 \sqrt{3}}{3}$ or $\frac{2}{\sqrt{3}}$ oe <br> B1 for a method confirming that their value gives a max not a min | ${ }^{n+1}$ |
| (c) | $\text { M1 } \quad \text { for } 80 \times p, \quad 0<p<1$ <br> A1 for 35 only |  |



## Notes

(a) B1 for $X \sim \mathrm{U}[0,9]$ or "continuous uniform"/"rectangular" distribution with correct range

Or allow the $\operatorname{pdff}(x)= \begin{cases}\frac{1}{9} & 0 \leq x \leq 9 \\ 0 & \text { otherwise }\end{cases}$
(c) M1 for $X(9-X)$ or $9 X-X^{2}$ may be implied by a correct answer A1 for $9 X-X^{2}$ or $a=-1$ and $b=9$
(d) $1^{\text {st }} \mathrm{B} 1$ for 4.5 or may be implied
$2^{\text {nd }} \mathrm{B} 1$ for $\frac{81}{12}$ or $\frac{27}{4}$ or $\int_{0}^{9} \frac{x^{2}}{9}$ ignore limits
$1^{\text {st }} \mathrm{M} 1$ for full method for $\mathrm{E}\left(X^{2}\right)$ using their $\operatorname{Var}(X)$ and $\mathrm{E}(X)$ or attempt to integrate $x^{n} \rightarrow$ $x^{n+1}$ leading to a value for $\mathrm{E}\left(X^{2}\right)$. Need to be using $\int_{0}^{9} \frac{x^{2}}{9}$ ignore limits.
$1^{\text {st }} \mathrm{A} 1$ for $\mathrm{E}\left(X^{2}\right)=27$, may be implied.
$\mathrm{d} 2{ }^{\text {nd }}$ M1 for using $9 \mathrm{E}(X)-\mathrm{E}\left(X^{2}\right)$. With their $\mathrm{E}(X)$ and $\mathrm{E}\left(X^{2}\right)$.This may be implied by a correct answer. Dep on first M

Alternative
B1 $\int_{0}^{9} \frac{\left(9 x-x^{2}\right)}{9} \mathrm{~d} x$ ignore limits, ft their (c) wheh must be of the form $\mathrm{a} \mathrm{X}^{2}+\mathrm{b}$
B1 $\int_{0}^{9} \frac{\left(9 x-x^{2}\right)}{9} \mathrm{~d} x$ with correct limits, ft their (c)
M1 attempt to integrate at least one $x^{n} \rightarrow x^{n+1}$. Need to be using their $\int_{0}^{9} \frac{\left(9 x-x^{2}\right)}{9} \mathrm{~d} x$
condone limits missing
A1 Correct Integration
dM1 subst in limits, need to see 9 substituted. Condone missing 0
(e) Allow $\leq$ instead of $<$ and $\geq$ instead of $>$ in this part
$1^{\text {st }} \mathrm{M} 1 \quad$ for forming a suitable inequality in $R$ and $X$ or just $X$. May be implied by a correct probability in $X$.
$1^{\text {st }} \mathrm{A} 1$ for simplifying to $9 X>3 X^{2}$ or $3>X$. May be implied by a correct probability in X
$2^{\text {nd }}$ M1 for forming a correct probability in $X$
$2^{\text {nd }}$ A1 for $\frac{1}{3}$ or exact equivalent

## edexcel

Mark Scheme (Results)
Summer 2014

Pearson Edexcel International A Level in Statistics 2
(WST02/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

## www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA040144
All the material in this publication is copyright
© Pearson Education Ltd 2014

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL I AL MATHEMATI CS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of $M$ marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\square$ The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.



| Question Number | Scheme ${ }^{\text {arks }}$ |
| :---: | :---: |
| 3. (a) <br> (b) | $\begin{aligned} & {\left[\mathrm{E}(T)=\frac{\alpha+\beta}{2}=2\right], \Rightarrow \alpha+\beta=4} \\ & {\left[\operatorname{Var}(T)=\frac{(\beta-\alpha)^{2}}{12}=\frac{16}{3}\right], \Rightarrow(\beta-\alpha)^{2}=64} \\ & \alpha=-2, \beta=6 \\ & \begin{aligned} & \mathrm{P}(T<3.4)=\frac{1}{8} \times(5.4) \\ & \quad=0.675 \end{aligned} \end{aligned}$ |
|  | Notes |
| (a) | $\begin{array}{ll} 1^{\text {st }} \mathrm{B} 1 & \alpha+\beta=4 \text { oe } \\ 2^{\text {nd }} \mathrm{B} 1 & (\beta-\alpha)^{2}=64 \text { oe allow }(\beta-\alpha)=+8 \text { or }(\beta-\alpha)=-8 \text { or } 3(\beta-\alpha)^{2}=192 \\ & \text { May be implied by a correct equation in one variable } \\ \text { M1 } & \text { Correct processes to obtain a correct equation in one variable. Allow one slip. } \\ \text { e.g. } & (\beta-[4-\beta])^{2}=64 \text { or } 2 \beta=12 \text { or } 4 \alpha^{2}-16 \alpha-48=0 \text { or }(2-\alpha)^{2}=16 \\ 1^{\text {st }} \mathrm{A} 1 & \alpha=-2, \\ 2^{\text {nd }} \mathrm{A} 1 & \beta=6 \\ & \text { If both correct answers only appear then this implies all } 5 \text { marks. } \\ \text { M1 } & \frac{1}{ \pm \text { their " }(\beta-\alpha) "} \times\left(3.4-\text { 'their } \alpha^{\prime}\right) \text { If their nexpression is }- \text { ve or }>1 \text { then M0 } \\ \text { A1 } & 0.675 \text { or exact equivalent e.g. } \frac{27}{40} \end{array}$ |






## edexcel 흧

## Mark Scheme (Results)

## January 2015

Pearson Edexcel International A Level in<br>Statistics 2<br>(WST02/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

## www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code IA040682
All the material in this publication is copyright
© Pearson Education Ltd 2015

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL I AL MATHEMATICS

## General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.


## 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\square$ The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

## J anuary 2015 WST02 Statistics S2 <br> Mark Scheme

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 1(a) \& \[
\begin{aligned}
\& X \sim \operatorname{Po}(3.2) \\
\& \mathrm{P}(X=3)=\frac{\mathrm{e}^{-3.2} 3.2^{3}}{3!} \\
\& \quad=0.2226 \quad \text { awrt } 0.223
\end{aligned}
\] \& B1
M1
A1
B1 \\
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& Y \sim \operatorname{Po}(1.6) \\
\& \begin{aligned}
\mathrm{P}(Y \geq 1) \& =1-\mathrm{P}(Y=0) \\
\& =1-\mathrm{e}^{-1.6} \\
\& =0.7981
\end{aligned}
\end{aligned}
\] \\
awrt 0.798
\end{tabular} \& B1
M1
A1 \\
\hline (c) \& \[
\begin{aligned}
\& X \sim \operatorname{Po}(0.8) \\
\& \begin{aligned}
\frac{\mathrm{P}(X=1) \times \mathrm{P}(X=3)}{\mathrm{P}(Y=4)} \& =\frac{\left(\mathrm{e}^{-0.8} \times 0.8\right) \times\left(\frac{\mathrm{e}^{-0.8} 0.8^{3}}{3!}\right)}{\frac{\mathrm{e}^{-1.6} 1.6^{4}}{4!}} \\
\& =\frac{0.3594 \times 0.0383}{0.05513} \\
\& =0.25
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
M1 M1 \\
M1 A1
A1
\end{tabular} \\
\hline (d) \& \begin{tabular}{l}
\(A \sim \operatorname{Po}(72)\) approximated by \(\mathrm{N}(72,72)\)
\[
\begin{aligned}
\& \frac{5000}{60}=83.33 \\
\& \begin{aligned}
\mathrm{P}(A \geq 84) \& =\mathrm{P}\left(Z \geq \frac{83.5-72}{\sqrt{72}}\right) \\
\& =\mathrm{P}(Z \geq 1.355 \ldots)
\end{aligned}
\end{aligned}
\]
\[
=0.0869 \quad \text { awrt 0.087/0.088 }
\] \\
Notes
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { M1 M1 } \\
\& \text { A1 }
\end{aligned}
\] \\
\hline (a)
(b)
(c)

(d) \& | B1 for writing or using $\operatorname{Po}(3.2)$ $\text { M1 } \frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}$ |
| :--- |
| B1 for writing or using $\operatorname{Po}(1.6)$ |
| M1 $1-\mathrm{P}(Y=0)$ or $1-\mathrm{e}^{-\lambda}$ |
| $1^{\text {st }} \mathrm{M} 1$ using $\operatorname{Po}(0.8)$ with $X=1$ or $X=3$ (may be implied by $0.359 \ldots$ or $0.0383 \ldots$ ) |
| $2^{\text {nd }} \mathrm{M} 1\left(\mathrm{e}^{-\lambda} \times \lambda\right) \times\left(\frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}\right)$ (consistent lambda) awrt 0.0138 implies $1^{\text {st }} 2 \mathrm{M}$ |
| marks |
| $3^{\text {rd }} \mathrm{M} 1$ correct use of conditional probability with denominator $=\frac{\mathrm{e}^{-1.6} 1.6^{4}}{4!}$ |
| $1^{\text {st }}$ A1 fully correct expression |
| $2^{\text {nd }} \mathrm{A} 10.25$ (allow awrt 0.250 ) |
| B1 Writing or using $\mathrm{N}(72,72)$ |
| $1^{\text {st }} \mathrm{M} 1$ for exact fraction or awrt 83.3 (may be implied by 84 ) |
| (Note: Use of $\mathrm{N}(4320,4320)$ can score B1 and $1^{\text {st }} \mathrm{M} 1$ ) |
| $2^{\text {nd }}$ M1 Using $84+/-0.5$ |
| $3^{\text {rd }}$ M1 standardising using $82.5,83,83.3$ (awrt 83.3 ), 83.5, 83.8, 84 or 84.5 , 'their mean' and 'their sd' | \& <br>

\hline
\end{tabular}

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 2(a) | $\begin{aligned} \mathrm{P}(X>4) & =1-\mathrm{F}(4) \\ & =1-\frac{3}{5} \\ & =\frac{2}{5} \mathrm{oe} \end{aligned}$ | M1 A1 |
|  |  | (2) |
| (b) | 1 | B1 (1) |
| (c) | $\begin{aligned} & \mathrm{f}(x)=\frac{\mathrm{dF}(x)}{\mathrm{d} x}=\frac{1}{5} \\ & \mathrm{f}(x)= \begin{cases}\frac{1}{5} & 1 \leq x \leq 6 \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ | M1 <br> A1 |
|  |  | (2) |
| (d) | $\mathrm{E}(X)=3.5$ | B1 (1) |
| (e) | $\begin{aligned} \text { Variance } & =\frac{(6-1)^{2}}{12} & \text { or } & \int_{1}^{6} \frac{1}{5} x^{2} \mathrm{~d} x-(3.5)^{2} \\ & =\frac{25}{12} & & \text { awrt } 2.08 \end{aligned}$ | M1 <br> A1 |
| (f) | $\begin{array}{rlrl} \mathrm{E}\left(X^{2}\right) & =\operatorname{Var}(X)+[\mathrm{E}(X)]^{2} & \\ & =\frac{25}{12}+3.5^{2} \text { or } \int_{1}^{6} \frac{1}{5} x^{2} \mathrm{~d} x & & \text { or } \int_{1}^{6} \frac{1}{5}\left(3 x^{2}+1\right) \mathrm{d} x \\ & =\frac{43}{3} & & \\ \mathrm{E}\left(3 X^{2}+1\right) & =3 \mathrm{E}\left(X^{2}\right)+1 & & =\left[\frac{3 x^{3}}{15}+\frac{x}{5}\right]_{1}^{6} \\ & =44 & & =44 \end{array}$ | M1 <br> dM1 <br> A1cao <br> (3) |
|  | Notes |  |
| (a) <br> (c) <br> (e) <br> (f) | M1 writing or using $1-\mathrm{F}(4)$ oe <br> M1 for differentiating to get $1 / 5$ <br> A1 both lines correct with ranges M1 $\frac{(6-1)^{2}}{12}$ or $\int_{1}^{6} \frac{1}{5} x^{2} \mathrm{~d} x-$ 'their $3.5^{, 2}$ <br> $1^{\text {st }} \mathrm{M} 1$ "their $\operatorname{Var}(X)$ " $+[\text { "their } \mathrm{E}(X) \text { "] }]_{n+1}^{2}$ (which must follow from or $\int_{1}^{6} \frac{1}{5} x^{2} \mathrm{~d} x$ and integrating $x^{n} \rightarrow \frac{x^{n+1}}{n+1}$ (may be seen in (e)) (May be implied by $\frac{43}{3}$ seen) <br> $2^{\text {nd }}$ M1 (dependent on previous M1) using $3 \times{ }^{\text {' }}$ their $\mathrm{E}\left(X^{2}\right)^{\prime}+1$ or $\int_{1}^{6} \frac{1}{5}\left(3 x^{2}+1\right) \mathrm{d} x$ and integrating $x^{n} \rightarrow \frac{x^{n+1}}{n+1}$ | in (e)) $\frac{1}{5}\left(3 x^{2}+1\right) \mathrm{d} x$ |




| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4(a) | $\begin{aligned} & X \sim \operatorname{Po}(6) \\ & \begin{aligned} \mathrm{P}(5 \leq X<7) & =\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 4) \quad \text { or } \frac{\mathrm{e}^{-6} 6^{5}}{5!}+\frac{\mathrm{e}^{-6} 6^{6}}{6!} \\ & =0.6063-0.2851 \\ & =0.3212 \end{aligned} \end{aligned}$ <br> awrt 0.321 | M1 <br> A1 <br> (3) |
| (b) | $\mathrm{H}_{0}: \lambda=9 \quad \mathrm{H}_{1}: \lambda<9$ <br> $X \sim \operatorname{Po}(9)$ therefore $\mathrm{P}(X \leq 4)=0.05496 \ldots \text { or } \mathrm{CR} X \leq 3$ <br> Insufficient evidence to reject $\mathrm{H}_{0}$ or Not Significant or 4 does not lie in the critical region. <br> There is no evidence that the mean number of accidents at the crossroads has reduced/decreased. | B1 <br> B1 <br> dM1 <br> A1cso <br> (4) |
| (a) (b) | Notes <br> M1 writing or using $\operatorname{Po}(6)$ <br> M1 either $\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 4)$ or $\frac{\mathrm{e}^{-\lambda} \lambda^{5}}{5!}+\frac{\mathrm{e}^{-\lambda} \lambda^{6}}{6!}$ <br> $1^{\text {st }} \mathrm{B} 1$ both hypotheses correct ( $\lambda$ or $\mu$ ) allow 0.5 instead of 9 <br> $2^{\text {nd }}$ B1 either awrt 0.055 or critical region $X \leq 3$ <br> dM1 for a correct comment (dependent on previous B1) <br> Contradictory non-contextual statements such as "not significant" so "reject H " score M0 <br> (May be implied by a correct contextual statement) <br> A1 cso requires correct contextual conclusion with underlined words and all previous marks in (b) to be scored. |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 5(a) | $\int_{-1}^{2} k\left(x^{2}+a\right) \mathrm{d} x+\int_{2}^{3} 3 k \mathrm{~d} x=1$ | M1 |
|  | $\left[k\left(\frac{x^{3}}{3}+a x\right)\right]_{-1}^{2}+[3 k x]_{2}^{3}=1$ | dM1 |
|  | $\begin{aligned} & k\left(\frac{8}{3}+2 a+\frac{1}{3}+a\right)+9 k-6 k=1 \\ & 6 k+3 a k=1 \end{aligned}$ | A1 |
|  | $\int_{-1}^{2} k\left(x^{3}+a x\right) \mathrm{d} x+\int_{2}^{3} 3 k x \mathrm{~d} x\left[=\frac{17}{12}\right]$ | M1 |
|  | $\left[k\left(\frac{x^{4}}{4}+\frac{a x^{2}}{2}\right)\right]_{-1}^{2}+\left[\frac{3 k x^{2}}{2}\right]_{2}^{3}=\frac{17}{12}$ | dM1 |
|  | $k\left(4+2 a-\frac{1}{4}-\frac{a}{2}\right)+\frac{27 k}{2}-6 k=\frac{17}{12}$ | A1 |
|  | $\begin{aligned} & \frac{45 k}{4}+\frac{3 a k}{2}=\frac{17}{12} \\ & 135 k+18 a k=17 \end{aligned}$ |  |
|  | $99 k=11$ | ddM1 |
|  | $a=1, k=\frac{1}{9}$ | A1 |
|  |  | (8) |
| (b) | 2 | B1 |
|  |  | (1) |
| (a) | Notes |  |
|  | $1^{\text {st }}$ M1 writing or using $\int_{-1}^{2} k\left(x^{2}+a\right) \mathrm{d} x+\int_{2}^{3} 3 k \mathrm{~d} x=1 \quad$ ignore limits |  |
|  | $\qquad$ |  |
|  | $2 \mathrm{dM1}$ attempting to integrate at least one $\quad n+1$ and sight of correct |  |
|  | limits (dependent on previous M1) |  |
|  | $1^{\text {st }} \mathrm{A} 1$ a correct equation - need not be simplified |  |
|  | $3^{\text {rd }} \mathrm{M} 1 \int_{-1}^{2} k\left(x^{3}+a x\right) \mathrm{d} x+\int_{2}^{3} 3 k x \mathrm{~d} x$ ignore limits |  |
|  | $4^{\text {th }} \mathrm{dM} 1 \quad$ setting $=\frac{17}{12}$ and attempting to integrate at least one $x^{n} \rightarrow \frac{x^{n+1}}{n+1}$ |  |
|  | and sight of correct limits (dependent on previous M1) |  |
|  | $2^{\text {nd }} \mathrm{A} 1$ a correct equation - need not be simplified |  |
|  | $5^{\text {th }}$ ddM1 attempting to solve two simultaneous equations in $a$ and $k$ by eliminating 1 variable (dependent on $1^{\text {st }}$ and $3^{\text {rd }} \mathrm{M} 1 \mathrm{~s}$ ) |  |
|  | $3^{\text {rd }}$ A1 both $a$ and $k$ correct |  |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline 6. (a) \& \[
\begin{array}{rlrlr}
\mathrm{P}(X=5) \& ={ }^{20} C_{5}(0.3)^{5}(0.7)^{15} \quad \text { or } \quad 0.4164-0.2375 \& \\
\& =0.17886 \ldots
\end{array}
\] \& M1
A1 \\
\hline (b) \& \[
\begin{align*}
\& \text { Mean }=6  \tag{2}\\
\& \begin{aligned}
\text { sd } \& =\sqrt{20 \times 0.7 \times 0.3} \\
\& =2.049 \ldots
\end{aligned}
\end{align*}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
(3)
\end{tabular} \\
\hline (c)

(d) \& \begin{tabular}{l}
$$
\begin{aligned}
& \mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p>0.3 \\
& X \sim \mathrm{~B}(20,0.3) \\
& \mathrm{P}(X \geq 8)=0.2277 \quad \text { or } \mathrm{P}(X \geq 10)=0.0480, \text { so } \mathrm{CR} X \geq 10
\end{aligned}
$$ <br>
Insufficient evidence to reject $\mathrm{H}_{0}$ or Not Significant or 8 does not lie in the critical region. <br>
There is no evidence to support the Director (of Studies') belief/There is no evidence that the proportion of parents that do not support the new curriculum is greater than $30 \%$
$$
\begin{aligned}
& X \sim \mathrm{~B}(2 n, 0.25) \\
& X \sim \mathrm{~B}(8,0.25) \mathrm{P}(X \geq 4)=0.1138 \\
& X \sim \mathrm{~B}(10,0.25) \mathrm{P}(X \geq 5)=0.0781
\end{aligned}
$$
$$
\begin{aligned}
& 2 n=10 \\
& n=5
\end{aligned}
$$

 \& 

B1 <br>
M1 <br>
A1 <br>
dM1 <br>
A1cso <br>
(5) <br>
M1 <br>
A1 <br>
A1 <br>
(3)
\end{tabular} <br>

\hline | (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& | Notes |
| :--- |
| M1 ${ }^{20} C_{5}(p)^{5}(1-p)^{15}$ or using $\mathrm{P}(X \leq 5)-\mathrm{P}(X \leq 4)$ |
| M1 use of $20 \times 0.7 \times 0.3$ (with or without the square root) |
| B1 both hypotheses correct ( $p$ or $\pi$ ) |
| M1 using $X \sim \mathrm{~B}(20,0.3) \quad$ (may be implied by $0.7723,0.2277,0.8867$ or 0.1133 ) |
| A1 awrt 0.228 or $\mathrm{CR} X \geq 10$ |
| dM1 a correct comment (dependent on previous M1) |
| A1 cso requires correct contextual conclusion with underlined words and all previous marks in (c) to be scored. |
| M1 for 0.1138 or 0.0781 or 0.8862 or 0.9219 seen $1^{\text {st }} \mathrm{A} 1 \mathrm{~B}(10,0.25)$ selected (may be implied by $n=10$ or $2 n=10$ or $n=5$ ) An answer of 5 with no incorrect working seen scores 3 out of 3 |
| Special Case: Use of a normal approximation, |
| M1 for $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8} n}}=z$ with $1.28 \leq \mathrm{z} \leq 1.29,1^{\text {st }} \mathrm{A} 1$ for $n=4.2 / 4.3,2^{\text {nd }}$ A1 for $n=5$ | \& <br>

\hline
\end{tabular}

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7. | $\begin{aligned} & Y \sim \mathrm{~N}\left(\frac{n}{5}, \frac{4 n}{25}\right) \\ & \mathrm{P}(Y \geq 30)=\mathrm{P}\left(Z>\frac{29.5-n / 5}{\frac{2}{5} \sqrt{n}}\right) \\ & \frac{29.5-n / 5}{\frac{2}{5} \sqrt{n}}=2 \\ & \\ & n+4 \sqrt{n}-147.5=0 \\ & \sqrt{n}=10.3 \ldots \\ & n=106 \end{aligned} \quad \text { or } 0.04 n^{2}-12.44 n+870.25=0.106 .26 \ldots \text { or } n=204.73 \ldots .$ | B1 <br> M1 <br> M1A1 <br> B1 <br> dM1 <br> A1 <br> A1 cao |
|  | Notes <br> $1^{\text {st }} \mathrm{B} 1$ writing or using $\mathrm{N}\left(\frac{n}{5}, \frac{4 n}{25}\right)$ <br> $1^{\text {st }}$ M1 writing or using $30+/-0.5$ <br> $2^{\text {nd }} \mathrm{M} 1$ standardising using 29, 29.5, 30 or 30.5 and their mean and their sd <br> $1^{\text {st }}$ A1 fully correct standardisation (allow $+/$-) <br> $2^{\text {nd }} \mathrm{B} 1$ for $z=+/-2$ or awrt 2.00 must be compatible with their <br> standardisation <br> $3^{\text {rd }} \mathrm{dM} 1$ (dependent on $2^{\text {nd }} \mathrm{M} 1$ ) getting quadratic equation and solving leading to a value of $\sqrt{n}$ or $n$ <br> $2^{\text {nd }} \mathrm{A} 1$ awrt 10.3 or awrt ( 106 or 107 or 204 or 205) <br> $3^{\text {rd }}$ A1 for 106 only (must reject other solutions if stated) <br> Note: $\frac{29.5-n / 5}{\frac{2}{5} \sqrt{n}}=-2$ leading to an answer of 106 may score <br> B1M1M1A1B0M1A1A1 | (8) |
|  |  |  |

## edexcel "

# Mark Scheme (Results) 

 June 2015Pearson Edexcel International A Level in Statistics 2 (WST02/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA042723
All the material in this publication is copyright
© Pearson Education Ltd 2015

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## PEARSON EDEXCEL IAL MATHEMATI CS

## General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper or ag- answer given
- $\square$ or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. (a) | $\{\mathrm{P}(X>4)=\} 1-\mathrm{F}(4) \quad 1-\mathrm{F}(4)$ seen or used | M1 |
|  | $\left\{=1-\frac{3}{5}\right\}=\frac{2}{5} \quad \frac{2}{5}$ or 0.4 | A1 |
|  |  | [2] |
| (b) | $\mathrm{P}(3<X<a)=0.642$ |  |
|  | $\mathrm{F}(a)-\mathrm{F}(3)=0.642$ F $(a)-\mathrm{F}(3)=0.642$ | M1 o.e. |
|  | $\mathrm{F}(a)-\frac{1}{20}\left(3^{2}-4\right)=0.642\{\Rightarrow \mathrm{~F}(a)=0.892\} \quad$ Correct equation | A1 o.e. |
|  | $\frac{1}{5}(2 a-5)-{ }^{"} \frac{1}{20}\left(3^{2}-4\right) "=0.642 \Rightarrow a=\ldots \quad \text { Solving this equation o.e., } \quad \text { leading to } a=\ldots \text { (or } x=\ldots \text { ). }$ | dM1 |
|  | $\left\{\frac{1}{5}(2 a-5)=0.892 \Rightarrow a=4.73 \quad a=4.73\right.$ (or $x=4.73$ ) | A1 cao |
|  |  | [4] |
| (b) | Alternative Method for Part (b) |  |
|  | $\int_{3}^{4}\left(\frac{1}{10} x\right)\{\mathrm{d} x\} \quad \begin{array}{r} \text { Correct expression for finding the } \\ \text { probability between } x=3 \text { and } x=4 \end{array}$ | M1 |
|  | $\left\{=\left[\frac{x^{2}}{20}\right]_{3}^{4}\right\}=\frac{4^{2}}{20}-\frac{3^{2}}{20}\left\{=\frac{7}{20}\right\} \quad \begin{array}{r}\text { Correct } \frac{4^{2}}{20}-\frac{3^{2}}{20}, \\ \text { simplified or un-simplified. }\end{array}$ | A1 |
|  | $\left.\int_{3}^{4}\left(\frac{1}{10} x\right)\{\mathrm{d} x\}+\int_{4}^{a}\left(\frac{2}{5}\right)\{\mathrm{d} x\}=0.642 \Rightarrow a=\ldots \quad \begin{array}{r}\text { Writes a correct equation and } \\ \text { attempts to solve leading to } \\ a=\ldots(\text { or } x=\ldots\end{array}\right)$ | dM1 |
|  | $\left\{\frac{7}{20}+\frac{2}{5} a-\frac{8}{5}=0.642 \Rightarrow\{a=4.73 \quad a=4.73\right.$ (or $x=4.73$ ) | A1 cao |
|  |  | [4] |
| (c) |  | M1 |
|  | $\begin{aligned} f(x)= & \frac{-}{\mathrm{d} x}\left(\overline{20}\left(x^{2}-4\right)\right)= \\ & \bar{x}^{x} x \end{aligned} \quad \text { At least one of } \frac{1}{10} x \text { or } \frac{2}{5}$ | A1 |
|  | $\mathrm{f}(x)=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{1}{5}(2 x-5)\right)=\frac{2}{5} \quad \text { Both } \frac{1}{10} x \text { and } \frac{2}{5}$ | A1 |
|  | $\mathrm{f}(x)=\left\{\begin{array}{lr} \frac{1}{10} x, \quad 2 \leqslant x \leqslant 4 \\ \frac{2}{5}, & 4<x \leqslant 5 \\ 0, & \begin{array}{r} \text { This mark is dependent on M1 } \\ \text { All three lines with limits correctly } \\ \text { followed through from their } \mathrm{F}^{\prime}(x) \end{array} \\ & \end{array}\right.$ | dB 1 ft |
|  |  | [4] |
|  |  | 10 |


|  | Question 1 Notes |  |
| :---: | :---: | :---: |
| 1. (a) | M1 <br> Note | $1-\mathrm{F}(4)$ seen or used. <br> Can be implied by either $1-\frac{3}{5}$ or $1-\frac{1}{5}(2(4)-5)$ or $1-\frac{1}{20}\left(4^{2}-4\right)$ <br> The probability statements $1-\mathrm{P}(X \leqslant 4)$ or $1-\mathrm{P}(X<4)$ are not sufficient for M1 |
|  | A1 <br> Note | $\frac{2}{5} \text { or } 0.4$ <br> Give M1A1 for the correct answer from no working. |
| (b) | NOTE | In part (b), candidates are allowed to write <br> - $\mathrm{F}(a)$ as either $\mathrm{P}(X<a)$ or $\mathrm{P}(X \leqslant a)$. Also condone $\mathrm{F}(a)$ written as $\mathrm{F}(x)$ <br> - $\mathrm{F}(3)$ as either $\mathrm{P}(X<3)$ or $\mathrm{P}(X \leqslant 3)$ |
|  | M1 | For writing $\mathrm{F}($ a $)-\mathrm{F}(3)=0.642$ or equivalent (see NOTE above) |
|  | A1 <br> Note | For an un-simplified $\mathrm{F}(a)-\frac{1}{20}\left(3^{2}-4\right)=0.642$ or equivalent (see NOTE above) Give $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 1$ for $\mathrm{F}(a)=0.892$ or $\mathrm{P}(X \geqslant a)=0.108$ |
|  | $\begin{gathered} \text { SC } \\ \text { Note } \end{gathered}$ | Allow SC $1^{\text {st }}$ M1 $1^{\text {st }}$ A1 for $\frac{1}{20}\left(a^{2}-4\right)-\frac{1}{20}\left(3^{2}-4\right)=0.642$ <br> Give $1^{\text {st }} \mathrm{M} 0$ for $\mathrm{F}(a-1)-\mathrm{F}(3)=0.642$ o.e. without a correct acceptable statement |
|  | dM1 Note | dependent on the FIRST method mark being awarded. <br> Attempts to solve $\frac{1}{5}(2 a-5)-$ "their $\mathrm{F}(3) "=0.642$ leading to $a=\ldots($ or $x=\ldots)$ <br> dM1 can be given for either $\frac{1}{5}(2 a-5)=0.892$ or $1-\frac{1}{5}(2 a-5)=0.108$ leading to $a=\ldots$ (or $x=\ldots$ ) |
|  | A1 | $a=4.73$ (or $x=4.73$ ) cao |
|  | Note Note | Give M0A0M0A0 for $\mathrm{F}(a)-(1-\mathrm{F}(3))=0.642\{\Rightarrow \mathrm{~F}(a)=1.392\}$ Give M0A0M0A0 for $\int_{3}^{a}\left(\frac{1}{10} x\right) \mathrm{d} x=0.642$ (this solves to give awrt 4.67) |
| (c) | M1 | At least one of either $\begin{aligned} & \frac{1}{20}\left(x^{2}-4\right) \rightarrow \pm \alpha x \pm \beta, \alpha \neq 0, \beta \text { can be } 0 \\ & \frac{1}{5}(2 x-5) \rightarrow \pm \delta, \delta \neq 0 \end{aligned}$ |
|  | $1^{\text {st }}$ A1 | At least one of $\frac{1}{10} \times$ or $\frac{2}{5}$. Can be simplified or un-simplified. |
|  | $2^{\text {nd }}$ A1 | Both $\frac{1}{10} x$ and $\frac{2}{5}$. Can be simplified or un-simplified. |
|  | dB1ft <br> Note <br> Note <br> Note | dependent on the FIRST method mark being awarded. <br> All three lines with limits correctly followed through from their $\mathrm{F}^{\prime}(x)$ <br> Condone the use of < rather than $\leqslant$ or vice versa. <br> 0 , otherwise is equivalent to $0, x<2$ and $0, x>5$ <br> In part (c), accept $f$ being expressed consistently in another variable eg. $u$ |




| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3. (a) | $\{\mathrm{f}(x)\} \uparrow \quad$A horizontal line drawn above the <br> $x$-axis in the first quadrant | B1 |
|  |  <br> dependent on the first B mark <br> Labels of $c, 2 c$ and $\frac{1}{c}$, marked on the graph. Ignore $\{O\},\{x\}$ and $\{\mathrm{f}(x)\}$ | dB1 |
|  |  | [2] |
| (b) | $\mathrm{E}(X)=\frac{3 c}{2} \quad \mathrm{E}(X)=\frac{3 c}{2}$, simplified or un-simplified. | B1 |
|  | $\left\{\mathrm{E}\left(X^{2}\right)=\right\} \int_{c}^{2 c}\left(\frac{1}{2 c-c} x^{2}\right)\{\mathrm{d} x\} \quad \int_{c}^{2 c} x^{2} \mathrm{f}(x)\{\mathrm{d} x\} \text { where } \mathrm{f}(x) \text { is }$ | M1 |
|  | $\begin{array}{rr} =\left[\frac{1}{c}\left(\frac{x^{3}}{3}\right)\right]_{\{c\}}^{\{2 c\}} \quad & \pm A g(c) x^{2} \rightarrow \pm B g(c) x^{3}, A \neq 0, B \neq 0 \\ \text { (Ignore limits for this mark) } \end{array}$ | M1 |
|  | $=\left(\frac{(2 c)^{3}}{3 c}-\frac{c^{3}}{3 c}\right)\left\{=\frac{7 c^{2}}{3}\right\} \quad \begin{array}{r} \text { dependent on firs } \mathbf{M ~ m a r} \\ \text { Applies limit of } 2 c \text { and } c \text { to an } \\ \text { integrated function in } x \text { and subtracts the } \\ \text { correct way round } \end{array}$ | dM1 |
|  | $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$ |  |
|  | $=\frac{7 c^{2}}{3}-\left(\frac{3 c}{2}\right)^{2} \quad \begin{array}{r} \begin{array}{r} \text { dependent on first } \mathbf{M} \text { mark } \\ \text { Applying the variance formula } \\ \text { correctly with their } \mathrm{E}(X) \end{array} \end{array}$ | dM1 |
|  | $=\frac{c^{2}}{12} * \quad$ Correct proof | A1 |
|  |  | [6] |
| (c) | Correct un-simplified (or simplified) | M1 |
|  | $\cdots X>4 c-2 X \Rightarrow 3 X>4 c$ |  |
|  | $\begin{array}{ll} \Rightarrow>\frac{4 c}{3} & \text { Rearranges } X>2(2 c-X) \text { to give } X>\ldots \text { or } X<\ldots \\ \text { See notes } \end{array}$ | dM1 |
|  | $\left\{\mathrm{P}(X>2(2 c-X))=\mathrm{P}\left(X>\frac{4 c}{3}\right)\right\}=\frac{2}{3} \quad \frac{2}{3}$ | A1 |
|  |  | [3] |
|  |  | 11 |
|  | Note: In (c), give M2 for either $X>\frac{4 c}{3}$ or $\mathrm{P}\left(X>\frac{4 c}{3}\right)$ or $1-\mathrm{P}\left(X<\frac{4 c}{3}\right)$ |  |


|  | Question 3 Notes |  |
| :---: | :---: | :---: |
| 3. (a) | $1^{\text {st }}$ B1 | A horizontal line drawn above the $x$-axis in the first quadrant |
|  | Note <br> Note | dependent on the FIRST B mark being awarded. <br> Labels of $c, 2 c$ and $\frac{1}{c}$, marked on the graph. <br> Allow the label $\frac{1}{2 c-c}$ as an alternative to $\frac{1}{c}$ <br> Ignore $\{O\},\{x\}$ and $\{\mathrm{f}(x)\}$ |
| (b) | B1 <br> Note <br> Note | $\mathrm{E}(X)=\frac{3 c}{2}$, simplified or un-simplified. This mark can be implied. <br> B1 can be given for an un-simplified $\left(\frac{(2 c)^{2}}{c}\right)-\left(\frac{c^{2}}{c}\right)$ or $\frac{3 c^{2}}{2 c}$ or $2 c-\frac{c}{2}$ etc. $\int_{c}^{2 c} \frac{1}{c} x \mathrm{~d} x$ or $\left[\frac{x^{2}}{2 c}\right]_{c}^{2 c}$ are not sufficient for B1. |
|  | $\begin{gathered} \mathbf{1}^{\text {st }} \mathbf{1} \\ \text { Note } \end{gathered}$ | Correct $\mathrm{E}\left(X^{2}\right)$ expression of $\int_{c}^{2 c} x^{2} \mathrm{f}(x)\{\mathrm{d} x\}$ where $\mathrm{f}(x)$ is equivalent to $\frac{1}{c}$. <br> Must have limits of $2 c$ and $c$. Note the $\mathrm{d} x$ is not required for this mark. |
|  | $\begin{gathered} 2^{\text {nd }} \mathrm{M} 1 \\ \text { Note } \end{gathered}$ | $\pm \operatorname{Ag}(c) x^{2} \rightarrow \pm B \mathrm{~g}(c) x^{3}, A \neq 0, B \neq 0$, where $\mathrm{g}(c)$ is a function of $c$ Limits are not required for the second $2^{\text {nd }}$ M1 mark. |
|  | $3^{\text {rd }}$ dM1 | dependent on the FIRST method mark being awarded. <br> Applies limits of $2 c$ and $c$ to an integrated function in $x$ and subtracts the correct way round. |
|  | $4^{\text {th }} \text { M1 }$ <br> Note | dependent on the FIRST method mark being awarded. <br> Applying the variance formula correctly with their follow through $\mathrm{E}(X)$. <br> Allow $4^{\text {th }}$ M1 for $\{\operatorname{Var}(X)=\} \int_{c}^{2 c}\left(\frac{1}{2 c-c} x^{2}\right)\{\mathrm{d} x\}-\left(\int_{c}^{2 c}\left(\frac{1}{2 c-c} x\right)\{\mathrm{d} x\}\right)^{2}$ |
|  | A1 | Correctly proves that $\operatorname{Var}(X)=\frac{c^{2}}{12}$. Note: Answer is given |
| (c) | $1^{\text {st }}$ M1 | For writing down a correctly un-simplified (or simplified) inequality statement. Eg: $X>2(2 c-X)$ or $\mathrm{P}(X>2(2 c-X))$ (Note: " P " is not required for this mark) |
|  | $\begin{gathered} 2^{\text {nd }} \mathbf{d M 1} \\ \text { Note } \\ \text { Note } \\ \hline \end{gathered}$ | dependent on the FIRST method mark being awarded. <br> Rearranges to give $\mathrm{P}(X> \pm \alpha c)$ or $\mathrm{P}(X< \pm \alpha c)$ or $X> \pm \alpha c$ or $X< \pm \alpha c, \alpha \neq 0$ <br> " P " is not required for these cases above <br> Also allow, with P , the statements $1-\mathrm{P}(X< \pm \alpha c)$ or $1-\mathrm{P}(X> \pm \alpha c), \alpha \neq 0$ |
|  | NOTE | Give M2 for either $X>\frac{4 c}{3}$ or $\mathrm{P}\left(X>\frac{4 c}{3}\right)$ or $1-\mathrm{P}\left(X<\frac{4 c}{3}\right)$ |
|  | A1 | $\frac{2}{3} \text { or } \frac{4}{6} \text { or } 0.6$ |
|  | Note | Give M1M1A1 for a final answer of $\frac{2}{3}$ from any working. |
|  |  |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3.(b) | Alternative Method 1 for Part (b) |  |
|  | $\{\operatorname{Var}(X)=\}$ |  |
|  | $\text { Implied } \mathrm{E}(X)=\frac{3 c}{2}$ | B1 |
|  | $\begin{array}{r} \int_{c}^{2 c}\left(\frac{1}{2 c-c}\left(x-\frac{3}{2} c\right)^{2}\right)\{\mathrm{d} x\} \quad \begin{array}{l} x_{c}^{2} \mathrm{f}(x)\{\mathrm{d} x\} \text { where } \mathrm{f}(x) \text { is equivalent to } \frac{1}{c} . \\ \text { Applies } \int_{c}^{2 c} \mathrm{f}(x)\left(x-\frac{3 c}{2}\right)^{2}\{\mathrm{~d} x\} \text { where } \mathrm{f}(x) \text { is a } \\ \text { is equivalent to } \frac{1}{c} . \end{array} \text { (Limits are required) } \end{array}$ |  |
|  | $=\frac{1}{c}\left[\frac{1}{3}\left(x-\frac{3 c}{2}\right)^{3}\right]_{\{c c\}}^{\{2 c\}}$ a $\begin{array}{r} \pm \operatorname{Ag}(c)(x-\delta)^{2} \rightarrow \pm \operatorname{Bg}(c)(x-\delta)^{3}, \\ A, B, \delta \neq 0 \text { (Ignore limits for this mark) }\end{array}$ | $2^{\text {nd }}$ M1 |
|  | $=\frac{1}{3 c}\left(\left(\frac{c}{2}\right)^{3}-\left(-\frac{c}{2}\right)^{3}\right)$ <br> dependent on first $M$ mark. <br> Applies limits of $2 c$ and $c$ to an integrated function in $x$ and subtracts the correct way round. | $3^{\text {rd }}$ dM1 |
|  | $=\frac{1}{3 c}\left(\frac{c^{3}}{4}\right)=\frac{c^{2}}{12} * \quad$ Correct proof | A1 |
|  |  | [6] |
|  | Alternative Method 2 for Part (b) |  |
| (b) | $\{\operatorname{Var}(X)=\}$ |  |
|  | $\int_{c}^{2 c}\left(\frac{1}{2 c-c}\left(x-\frac{3}{2} c\right)^{2}\right)\{\mathrm{d} x\} \quad$ Award as in Alt. Method 1 | $\begin{aligned} & \text { B1 } \\ & \mathbf{n}^{\text {st }} \mathbf{M 1} \\ & \mathbf{4}^{\text {th }} \text { M1 } \end{aligned}$ |
|  | $=\frac{1}{c} \int_{c}^{2 c}\left(x^{2}-3 c x+\frac{9}{4} c^{2}\right)\{\mathrm{d} x\}$ |  |
|  | $=\frac{1}{c}\left[\frac{1}{3} x^{3}-\frac{3}{2} c x^{2}+\frac{9}{4} c^{2} x\right]_{\{c\}}^{\{2 c\}} \quad \begin{array}{r} \pm A \mathrm{~g}(c)(x-\delta)^{2} \rightarrow \pm \operatorname{Bg}(c)\left( \pm \alpha x^{3} \pm \beta x^{2} \pm \delta x\right)^{3}, \\ A, B, \alpha, \beta, \delta \neq 0 \text { (Ignore limits for this mark) }\end{array}$ | $2^{\text {nd }}$ M1 |
|  | $=\frac{1}{c}\left(\left(\frac{1}{3}(2 c)^{3}-\frac{3}{2} c(2 c)^{2}+\frac{9}{4} c^{2}(2 c)\right)-\left(\frac{1}{3}(c)^{3}-\frac{3}{2} c(c)^{2}+\frac{9}{4} c^{2}(c)\right)\right) \quad$ As earlier | $3^{\text {rd }}$ dM1 |
|  | $=\frac{1}{c}\left(\left(\frac{8}{3} c^{3}-6 c^{3}+\frac{9}{2} c^{3}\right)-\left(\frac{1}{3} c^{3}-\frac{3}{2} c^{3}+\frac{9}{4} c^{3}\right)\right)$ |  |
|  | $=\frac{1}{c}\left(\left(\frac{7}{6} c^{3}\right)-\left(\frac{13}{12} c^{3}\right)\right)=\frac{1}{c}\left(\frac{c^{3}}{12}\right)$ |  |
|  | $=\frac{c^{2}}{12} * \quad$ Correct proof | A1 |
|  |  | [6] |

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& \multicolumn{3}{|c|}{Scheme} \& Marks \\
\hline \multirow[t]{3}{*}{4. (a)} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{P}(X=0 \mid k=3)=0.0498 \\
\& \mathrm{P}(X=0 \mid k=4)=0.0183 \\
\& \mathrm{P}(X=0 \mid k=5)=0.0067 \\
\& \left\{\mathrm{e}^{-k}<0.025 \Rightarrow k>\right\} 3.688 \ldots \\
\& \mathrm{P}(X \leqslant 8 \mid k=3)=0.9962, \mathrm{P}(X \geqslant 9 \mid k=3)=0.0038 \\
\& \mathrm{P}(X \leqslant 8 \mid k=4)=0.9786, \mathrm{P}(X \geqslant 9 \mid k=4)=0.0214 \\
\& \mathrm{P}(X \leqslant 8 \mid k=5)=0.9319, \quad \mathrm{P}(X \geqslant 9 \mid k=5)=0.0681
\end{aligned}
\]} \& \begin{tabular}{l}
At least one of these 9 probabilites or awrt 3.7 seen in their working. \\
Both \(\mathrm{P}(X=0)=0.0183\) or \\
awrt 3.7 and either \(\mathrm{P}(X \geqslant 9)=0.0214\) or \(\mathrm{P}(X \leqslant 8)=0.9786\)
\end{tabular} \& B1

B1 <br>
\hline \& \multicolumn{2}{|l|}{Both tails less than $2.5 \%$ when $k=4$} \& Final answer given as $k=4$ \& B1 <br>
\hline \& \& \& \& [3] <br>
\hline \multirow[t]{4}{*}{(b)} \& \multicolumn{2}{|l|}{Actual sig. level $=0.0214+0.0183$} \& See notes \& M1 <br>
\hline \& \multicolumn{2}{|r|}{$=0.0397$} \& 0.0397 \& A1 cao <br>
\hline \& \& \& \& 2] <br>
\hline \& \& \& \& 5 <br>
\hline \& \multicolumn{4}{|c|}{Question 4 Notes} <br>
\hline \multirow[t]{5}{*}{4. (a)} \& \& \& \& <br>
\hline \& $1^{\text {st }} \mathrm{B1}$ \& \multicolumn{3}{|l|}{For any of $0.0498,0.0183,0.0067,0.9962,0.9786,0.9319,0.0038,0.0214,0.0681$ or awrt 3.7 seen in their working.} <br>

\hline \& \[
$$
\begin{gathered}
2^{\text {nd }} \\
\text { B1 } \\
\text { Note }
\end{gathered}
$$

\] \& \multicolumn{3}{|l|}{| For both $\mathrm{P}(X=0)=0.0183$ or awrt 3.7 and either $\mathrm{P}(X \geqslant 9)=0.0214$ or $\mathrm{P}(X \leqslant 8)=0.9786$ |
| :--- |
| These must be written as probability statements. |} <br>

\hline \& $3^{\text {rd }} \mathrm{B} 1$ \& \multicolumn{3}{|l|}{Final answer given as $k=4$. Also allow $\lambda=4$} <br>
\hline \& Note \& \multicolumn{3}{|l|}{Do not recover working for part (a) in part (b)} <br>
\hline \multirow[t]{3}{*}{(b)} \& M1 \& \multicolumn{3}{|l|}{For the addition of two probabilities for two tails, where each tail <0.05} <br>
\hline \& A1 \& \multicolumn{3}{|l|}{0.0397 cao} <br>
\hline \& \& \& \& <br>
\hline
\end{tabular}



|  | Question 5 Notes |  |
| :---: | :---: | :---: |
| 5. (a) | Note | You can mark parts (a) and (b) together for this question. |
|  | $\begin{aligned} & \mathbf{1}^{\text {st }} \mathrm{B} 1 \\ & 2^{\text {nd }} \mathrm{B} 1 \end{aligned}$ | At least three correct values for $y$ of either $6,7,8$ or 9 Correct values for $y$ of 6,78 and 9 only. Note: Any extra value(s) given is $2^{\text {nd }} \mathrm{B} 0$. |
| (b) | $1^{\text {st }}$ M1 | At least one of either $(0.35)^{2},(0.65)(0.35),(0.35)(0.65)$ or $(0.65)^{2}$. Can be implied. |
|  | $2^{\text {nd }}$ M1 | At least two of either $(0.35)^{2},(0.65)(0.35),(0.35)(0.65)$ or $(0.65)^{2}$. Can be implied. |
|  | $1^{\text {st }} \mathrm{A1}$ | At least two correct probabilities given which either must be linked to a correct sample $\left(x_{1}, x_{2}\right)$ or their followed through $y$-value. |
|  | $\begin{gathered} 2^{\text {nd }} \mathrm{A1} \\ \text { B1ft } \end{gathered}$ | At least 3 correct probabilities corresponding to the correct value of $y$. Either <br> - all 4 correct probabilities corresponding to the correct value of $y$ <br> - 6, 7, 8 and 9 with two correct probabilities, two other probabilities and $\sum \mathrm{p}(y)=1$ |
|  | Note <br> Note <br> Note | B 1 ft is dependent on $1^{\text {st }} \mathrm{M} 12^{\text {nd }} \mathrm{M} 11^{\text {st }} \mathrm{A} 1$. <br> A table is not required but $y$-values must be linked with their probabilities for $2^{\text {nd }}$ A1 B1 Eg: $(6,6)$ by itself does not count as an acceptable value of $y$ |
| (c) | M1 <br> Note | A correct follow through expression for $\mathrm{E}(Y)$ using their distribution Also allow M1 for a correct expression for $\mathrm{E}(X)$ |
|  | A1 | $7.95 \text { cao Allow } \frac{159}{20}$ |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6. (a) | $X \sim \mathrm{~B}(30,0.4) \quad X \sim \mathrm{~B}(30,0.4)$ | B1 |
| (b) | Eg: Any one of either Any one of these <br> - Constant probabilty of buying insurance <br> - Customers buy insurance independently of each other assumptions in <br> context which <br> refers to insurance.  | B1 |
| (c) | $\mathrm{P}(X<r)<0.05$ | 1] |
|  | $\{\mathrm{P}(X \leqslant 8)=\mathrm{P}(X<9)\}=0.0940$ For at least one of either $0.094(0)$ or <br> $\{\mathrm{P}(X \leqslant 7)=\mathrm{P}(X<8)\}=0.0435$ 0.0435 seen in part (c) | M1 |
|  |  | A1 |
|  |  | [2] |
| (d) | $\{Y \sim \mathrm{~B}(100,0.4) \approx\} Y \sim \mathrm{~N}(40,24) \quad$ Normal or N | M1 |
|  | $\{\mathrm{P}(Y \geqslant t)\} \approx \mathrm{P}(Y>t-0.5) \quad$ For either $t-0.5$ or $t+0.5$ | M1 |
|  | $\left\{\mathrm{P}\left(Z>\frac{(t-0.5)-40}{\sqrt{24}}\right)=0.938\right\}$ |  |
|  | Standardising $( \pm)$ with their mean and their $\frac{(t-0.5)-40}{\sqrt{24}}=-1.54$ standard deviation and either $t-0.5$ or $t$ or $t+0.5$ or $t-1.5$ | M1 |
|  | -1.54 or 1.54 or awrt -1.54 or awrt 1.54 | B1 |
|  | So, $\{\mathrm{So}, t=32.955571 ..\} \Rightarrow t=33$. | A1 cao |
|  |  | [6] |
| (e) | $\mathrm{H}_{0}: p=0.4, \mathrm{H}_{1}: p<0.4$ Both hypotheses are stated correctly | B1 |
|  | $\left\{\right.$ Under $\left.\mathrm{H}_{0}, X \sim \mathrm{~B}(25,0.4)\right\}$ |  |
|  | Probability Method $\quad$ Critical Region Method |  |
|  | P $\quad \mathrm{P}(X \leqslant 6) ;=0.0736$ | M1 |
|  | $\begin{array}{c\|c\|c} \mathrm{P}(X \leqslant 6) ;=0.0736 & \{\mathrm{P}(X \leqslant 7)=0.1536\} & \text { Either } 0.0736 \text { or } \\ & \mathrm{CR}: X \leqslant 6 & \mathrm{CR}: X \leqslant 6 \text { or } \mathrm{CR}: X<7 \end{array}$ | A1 |
|  | $\{0.0736<0.10\}$ |  |
|  | Reject $\mathrm{H}_{0}$ or significant or 6 lies in the CR | dM1 |
|  | So percentage (or proportion) who buy insurance has decreased. | A1 cso |
|  |  | [5] |
|  |  | 15 |



| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7. (a) | $\int_{0}^{k}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}+\int_{5}^{k} \frac{1}{5}(5-x)\{\mathrm{d} x\}=1 \quad \begin{array}{r} \text { Complete method of writing a correct } \\ \text { equation for the area with correct limits } \\ \text { and setting the result equal to } \end{array}$ | M1 |
|  | $\left[\frac{x^{2}}{15}\right]_{\{0\}}^{\{k\}}+\left[x-\frac{x^{2}}{10}\right]_{\{k\}}^{\{5\}}=1 \quad$ Both $\frac{2 x}{15} \rightarrow \frac{x^{2}}{15}$ and $\frac{1}{5}(5-x) \rightarrow x-\frac{x^{2}}{10}$ | M1 |
|  | $\left(\frac{k^{2}}{15}\right)+\left(5-\frac{5^{2}}{10}-\left(k-\frac{k^{2}}{10}\right)\right)=1$ |  |
|  | $2 k^{2}+150-75-30 k+3 k^{2}=30$ |  |
|  | $k^{2}-6 k+9=0$ or $\frac{k^{2}}{6}-k+\frac{3}{2}=0$ |  |
|  | $(k-3)(k-3)=0 \Rightarrow k=\ldots$ <br> Dependent on the $1^{\text {st }} \mathrm{M}$ mark <br> Attempt to solve a 3 term quadratic equation leading to $k=\ldots$ | dM1 |
|  |  | A1 |
|  |  | [5] |
| (b) |  | B1 ft |
|  |  | [1] |
| (c) | $\left\{\mathrm{P}\left(\left.X \leqslant \frac{k}{2} \right\rvert\, X \leqslant k\right)=\frac{\mathrm{P}\left(X \leqslant \frac{k}{2} \cap X \leqslant k\right)}{\mathrm{P}(X \leqslant k)}\right\}$ |  |
|  | $=\frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right)}{\mathrm{P}(X \leqslant k)} \quad$ Either $\frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right)}{\mathrm{P}(X \leqslant k)}$ or $\frac{\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)}$ seen or implied. | M1 |
|  | $=\frac{\int_{0}^{\frac{k}{2}}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}}{\int_{0}^{k}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}}$ <br> see notes | dM1 |
|  | $=\frac{\frac{1}{15}\left(\frac{k}{2}\right)^{2}}{\frac{k^{2}}{15}} \quad \begin{array}{r} \text { Correct substitution of their } \\ \text { limits or their } k \text { into } \\ \text { conditional probability } \\ \text { formula. } \end{array}$ | A1ft |
|  | $\left\{=\frac{\left(\frac{9}{60}\right)}{\left(\frac{9}{15}\right)}=\frac{0.15}{0.6}\right\}=\frac{1}{4} \quad 1 \frac{1}{4}$ or 0.25 | A1 cao |
|  |  | [4] |
|  |  | 10 |


|  | Question 7 Notes |  |
| :---: | :---: | :---: |
| 7. (a) | $\mathbf{1}^{\text {st }} \mathrm{M} 1$ | $\int_{0}^{k}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}+\int_{5}^{k} \frac{1}{5}(5-x)\{\mathrm{d} x\}=1$. (with correct limits and $=1$ ) $\{\mathrm{d} x\}$ not needed. |
|  | $2^{\text {nd }}$ M1 | Evidence of $x^{n} \rightarrow x^{n+1}$ |
|  | $1^{\text {st }} \mathrm{A} 1$ | Both $\frac{2 x}{15} \rightarrow \frac{x^{2}}{15}$ and $\frac{1}{5}(5-x) \rightarrow x-\frac{x^{2}}{10}$ |
|  | $3^{\text {rd }} \mathbf{d M 1}$ | dependent on the FIRST method mark being awarded. <br> Attempt to solve a three term quadratic equation. Please see table on page 20 |
|  | $2^{\text {nd }} \mathrm{A} 1$ | $k=3$ from correct working. |
|  | Note Note | WARNING: $\frac{2 x}{15}=\frac{1}{5}(5-x)$ to get $k=3$ is M0M0A0M0A0. <br> It is possible to give M0M1A1M0A0 in part (a). |
| (b) | B1 ft | Mode $=3$ or candidate states their $k$ value from part (a), where $0<$ their $k<5$ |
| (c) | $1{ }^{\text {st }} \mathrm{M} 1$ Note | Either $\frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right)}{\mathrm{P}(X \leqslant k)}$ or $\frac{\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)}$, seen or implied by their later working. Without reference to a correct conditional probability statement give $1^{\text {st }} \mathrm{M} 0$ for either $\frac{\mathrm{f}\left(\frac{k}{2}\right)}{\mathrm{f}(k)}$ or $\frac{\mathrm{F}(k)-\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)}$ or $\frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right) \times \mathrm{P}(X \leqslant k)}{\mathrm{P}(X \leqslant k)}$ |
|  | $2^{\text {nd }} d M 1$ <br> Note | dependent on the FIRST method mark being awarded. <br> Applies the conditional probability statement by writing down <br> - $\frac{\int_{0}^{\frac{k}{2}}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}}{\int_{0}^{k}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}}$ with limits. <br> - $\frac{\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)}$ where $\mathrm{F}(x)$ is defined as $\mathrm{F}(x)=\frac{x^{2}}{15}$ <br> These statements can be implied by later working. <br> Finding $\mathrm{P}(X \leqslant 1.5)=0.15$ and $\mathrm{P}(X \leqslant 3)=0.6$ without applying $\frac{0.15}{0.6}$ is $2^{\text {nd }} \mathrm{M} 0$ |
|  | $1^{\text {st }}$ A1ft Note | Correct substitution of their limits or their $k$ into conditional probability formula. Candidates can work in terms of $k$ for this $1^{\text {st }} \mathrm{A} 1$ mark. |
|  | $2^{\text {nd }} \mathbf{A 1}$ Note | $\frac{1}{4} \text { or } 0.25 \text { cao }$ <br> Condone giving $2^{\text {nd }} \mathrm{A} 1$ for achieving a correct answer of 0.25 where at least one of their stated $\mathrm{P}\left(X \leqslant \frac{k}{2}\right)$ or $\mathrm{P}(X \leqslant k)$ is greater than 1 |
|  | Note | Alternative method using similar triangles. Area up to $\frac{k}{2}$ is $\frac{1}{4}$ of the area up to $k$. This can score 4 marks. |


| 7. (a) | Alternative Method 1 for Part (a) Using the CDF |  |
| :---: | :---: | :---: |
|  | $\begin{array}{ll} 0 \leqslant x \leqslant k, \mathrm{~F}(x)=\int_{0}^{k} \frac{2 t}{15}\{\mathrm{~d} t\}=\left[\frac{2 t^{2}}{\underline{30}}\right]_{0}^{x}=\frac{x^{2}}{\underline{15}} & \text { Evidence of } x^{n} \rightarrow x^{n+1} \\ k<x \leqslant 5, \mathrm{~F}(x)=\mathrm{F}(k)+\int_{k}^{x} \frac{1}{5}(5-t)\{\mathrm{d} t\} & \text { Both } \frac{2 x}{15} \rightarrow \frac{x^{2}}{\underline{15}} \text { and } \\ =\frac{k^{2}}{15}+\left[\underline{\left.\frac{1}{5}\left(5 t-\frac{t^{2}}{2}\right)\right]^{x}}\right]_{k}^{x} & \frac{1}{5}(5-x) \rightarrow x-\frac{x^{2}}{10} \end{array}$ | $\begin{array}{\|l} 2^{\text {nd }} \mathbf{M 1} \\ \\ \\ \mathbf{1}^{\text {st A1 }} \text { A1 } \\ \text { o.e. } \end{array}$ |
|  | $\begin{aligned} & =\frac{k^{2}}{15}+\frac{1}{5}\left(5 x-\frac{x^{2}}{2}\right)-\frac{1}{5}\left(5 k-\frac{k^{2}}{2}\right) \\ & =x-\frac{x^{2}}{10}-k+\frac{k^{2}}{6} \end{aligned}$ |  |
|  | $\{\mathrm{F}(5)=1 \Rightarrow\} 5-\frac{5^{2}}{10}-k+\frac{k^{2}}{6}=1$ <br> Complete method of writing a correct equation for the area with correct limits and setting $\mathrm{F}(5)=1$ | $1^{\text {st }}$ M1 |
|  | then apply the main scheme |  |
| 7. (a) | Alternative Method 2 for Part (a) Use of Area |  |
|  | $\frac{1}{2} k\left(\frac{2 k}{15}\right)+\frac{1}{2}\left(\frac{5-k}{5}\right)(5-k)=1 \quad$ Complete area expression put $=1$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$ |
|  | then apply the main scheme |  |
| General |  |  |
| 7. (a) | Method mark for solving a 3 term quadratic of the form $x^{2}+b x+c=0$ <br> Factorising/Solving a quadratic equation is tested in Question 7(a). <br> 1. Factorisation <br> $\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $\|p q\|=\|c\|$, leading to $x=\ldots$ <br> $\left(a x^{2}+b x+c\right)=(m x \pm p)(n x \pm q)$, where $\|p q\|=\|c\|$ and $\|m n\|=\|a\|$, leading to $x=\ldots$ <br> 2. Formula <br> Attempt to use correct formula (with values for $a, b$ and $c$ ) <br> 3. Completing the square <br> Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$ |  |

## edexcel 쁯

## Mark Scheme (Results)

## Summer 2015

Pearson Edexcel GCE in Statistics 2 (6684/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA042711
All the material in this publication is copyright
© Pearson Education Ltd 2015

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## PEARSON EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper or ag- answer given
- $\square$ or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks
affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

| Question <br> Number | Scheme |  | Marks |
| :---: | :--- | :--- | :--- |
| 1. (a) | notes |  |  |
|  | $\mathrm{P}(N \geq 10)=1-\mathrm{P}(N \leq 9)$ | M1: using or writing $1-\mathrm{P}(N \leq 9)$ or <br> $1-\mathrm{P}(N<10)$ | M1 A1 |
|  | A1: awrt 0.413 |  |  |

(b) $\quad Y$ represents number of owls per $200 \mathrm{~km}^{2} \Rightarrow$
$Y \sim \operatorname{Po}(1.8)$
$\mathrm{P}(Y=2)=\frac{e^{-1.8} 1.8^{2}}{2!}$
B1: using or writing $\operatorname{Po}(1.8)$
B1
M1 : for a single term of the form
$\frac{e^{-\lambda} \lambda^{2}}{2!}$ with any value for $\lambda$ or
M1 A1
(c)

| Normal approximation | M1: Using or writing, normal approximation with mean $=450$ | M1 |
| :---: | :---: | :---: |
| $\mu=50 \times 9=450 \quad \sigma^{2}=450$ | M1: Using or writing the mean = variance. Does not need to be 450 . May be seen in the standardisation calculation. | M1 |
| $\mathrm{P}(X \geq 470) \approx 1-\mathrm{P}\left(Z<\frac{469.5-450}{\sqrt{450}}\right)$ | M1: $\pm\left(\frac{(470 \text { or } 469.5 \text { or } 470.5)-\text { their mean }}{\text { their } s d}\right)$ <br> May be implied by a correct answer or $Z=$ awrt 0.92 | M1 |
|  | M1: dep on previous method mark being awarded. Using a continuity correction $470 \pm 0.5$ <br> May be implied by a correct answer or $Z=$ awrt 0.92 | dM1 A1 |
|  | A1: correct standardisation no need to subtract from 1. Award for $\frac{469.5-450}{\sqrt{450}}$ or awrt 0.92 or a correct answer |  |
| $=0.1788$ | A1: awrt 0.179 | A1 <br> (6) |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 2(a) |  | notes |  |
|  | $X \sim \mathrm{~B}(30,0.25)$ | B 1 : using $\mathrm{B}(30,0.25)$ | B1 |
|  | $\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)=0.8943-0.0979$ | M1: using $\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)$ or $\mathrm{P}(X \geq 5)-\mathrm{P}(X \geq 11)$ oe | M1 A1 |
|  | $=0.7964$ | A1: awrt 0.796 |  |
|  | NB a correct answer gains full marks |  |  |


| (b) | $\mathrm{H}_{0}: p=0.25 \quad \mathrm{H}_{1}: p<0.25$ | B1: Both hypotheses correct, labelled $\mathrm{H}_{0}$ or NH or $\mathrm{H}_{\mathrm{n}}$ and $\mathrm{H}_{1}$ or AH or $\mathrm{H}_{\mathrm{a}}$, must use $p$ or $p(x)$ or $\pi$ | B1 |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{B}(15,0.25)$ | M1: for using $\mathrm{B}(15,0.25)$ |  |
|  | $\mathrm{P}(X \leq 1)=0.0802$ | A1: awrt 0.0802 or CR $X \leq 1$ (allow $\mathrm{P}(X \geq 2)=0.9198$ ) | M1 A1 |
|  | NB: Allow M1 A1 for a correct CR with no | correct working |  |
|  | Reject $\mathrm{H}_{0}$ or Significant or 1 ies in the critical region | M1: A correct statement - do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no $\mathrm{H}_{1}$ given then M 0 . Ignore their comparison. For a probabillity $<0.5$, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability $>0.5$, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test. | dM1 <br> A1cso |
|  | There is evidence that the radio company's claim is true. <br> Or <br> The new transmitter will reduce the proportion of houses unable to receive radio | A1: cso (all previous marks awarded) and a correct statement containing the word company if writing about the claim or radio if full context. |  |


| Question <br> Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
|  |  | Notes |  |
| 3(a) | $\int_{0}^{2} k x^{2} \mathrm{~d} x+\int_{2}^{6} k\left(1-\frac{x}{6}\right) \mathrm{d} x=1$ | M1: for adding the two integrals, and attempting to integrate, at least one integral $x^{n} \rightarrow x^{n+1}$, ignore limits and does not need to be put equal to 1 . Do not award if they add before integrating | M1 A1 |
|  | $k\left[\frac{x^{3}}{3}\right]_{0}^{2}+k\left[x-\frac{x^{2}}{12}\right]_{2}^{6}=1$ | A1: correct integration, ignore limits and does not need to be put equal to 1 |  |
|  | $k\left[\frac{8}{3}\right]+k\left[3-\frac{5}{3}\right]=1$ | M1: dependent on first M being awarded, correct use of limits and putting equal to 1 . <br> This may be seen as $\mathrm{F}(2)=\frac{8}{3} k$ and using $\mathrm{F}(6)=1$ | dM1 <br> A1cso |
|  | $4 k=1$ | A1: cso answer given so need $4 k=1$ leading to $k=\frac{1}{4}$ |  |
|  | $k=\frac{1}{4} *$ |  |  |
| NB Validation - if they substitute in $k=1 / 4$ you may award the $1^{\text {st }}$ three marks as per scheme. For the Final A mark they must say " therefore $k=1 / 4$ " |  |  |  |


| (b) | 2 | B1: cao | B1 |
| :---: | :---: | :---: | :---: |
| (c) | $\int_{0}^{x} k t^{2} \mathrm{dt}=\frac{k x^{3}}{3}$ | M 1 : attempting to find $\int_{0}^{x} k t^{2} \mathrm{~d} t$ $t^{2} \rightarrow t^{3}$, ignore limits, may leave in terms of $k$ | M1 |
|  | $\begin{gathered} \int k\left(1-\frac{t}{6}\right) \mathrm{dt}=k\left[t-\frac{t^{2}}{12}\right]+C \\ =k t-k \frac{t^{2}}{12}+C \end{gathered}$ $F(6)=1$ $6 k-3 k+C=1 \quad \therefore C=\frac{1}{4}$ | M1: attempting to find $\int k\left(1-\frac{t}{6}\right) \mathrm{d} t$ at least one integral $t^{n} \rightarrow t^{n+1}$ and either have $+C(C \neq 0)$ and use $\mathrm{F}(6)=1$ or have limits 2 and $x$ and + "their $\int_{0}^{2} k t^{2} \mathrm{dt}$ " and attempt to integrate $t^{n} \rightarrow t^{n+1}$ <br> NB: may use any letter, need not be $t$ ,condone use of $x$ | M1 |
|  | $\mathrm{F}(x)\left\{\begin{array}{cc} 0 & x<0 \\ \frac{x^{3}}{12} & 0 \leq x \leq 2 \\ \frac{x}{4}-\frac{x^{2}}{48}+\frac{1}{4} & 2<x \leq 6 \\ 1 & x>6 \end{array}\right.$ | A1: second line correct <br> A1: third line correct <br> B 1 : first and fourth line correct they may use "otherwise" instead of $x<0$ or $x>6$ but not instead of both | A1 <br> A1 <br> B1 |
|  | NB: Condone use of $<$ rather than $\leq$ and vice versa |  |  |


| Question <br> Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| (d) | $\frac{x}{4}-\frac{x^{2}}{48}+\frac{1}{4}=0.75$ | M1: putting their line 2 or their line 3 $=0.75$ | M1 A1 |
|  | $x^{2}-12 x+24=0$ oe | A1: The correct quadratic equation like terms must be collected together |  |
|  | $x=\frac{12 \pm \sqrt{144-4 \times 24}}{2}$ | M1d: dep on previous M1 being awarded. A correct method for solving a 3 term quadratic equation $=$ 0 leading to $x=\ldots$ Use either the quadratic formula or completing the square - If they quote a correct formula and attempt to use it, award the method mark if there are small errors. Where the formula is not quoted, the method mark can be implied from correct working with values but is lost if there is a mistake. If they attempt to factorise award M1 if they have $\left(x^{2}+b x+c\right)=(x+p)(x+q)$ <br> where $\|p q\|=\|c\|$ leading to $x=\ldots$ <br> May be implied by a correct value for $x$ | dM1 A1 |
|  | $=2.54$ or $6-2 \sqrt{3}$ | A1: awrt 2.54 or $6-2 \sqrt{3}$ or $6-\sqrt{12}$. If 2 values for $x$ are given they must eliminate the incorrect one. |  |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
|  |  | Notes |  |
| 4(a) | 0.8 | B1: cao | B1 |
| (b) | 0.25 | B1: cao | B1 |
| (c) | $\frac{(0.5-0)^{2}}{12}=\frac{1}{48}$ or awrt 0.0208 | M1: for $\frac{(0.5 \pm 0)^{2}}{12}$ or for $\int_{0}^{0.5} 2 x^{2} \mathrm{~d} x-(\text { their }(b))^{2}$ with some integration $x^{n} \rightarrow x^{n+1}$ A1: $\frac{1}{48}$ or awrt 0.0208 or awrt $2.08 \times 10^{-2}$ | M1A1 |


| (d) | $\mathrm{P}(L>0.4)=0.2$ | $\mathrm{P}(L<0.4)=0.8$ | An awrt 0.123 award B1 M1 A1 | $\begin{aligned} & \text { B1 } \\ & \text { dM1A1 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $Y \sim \mathrm{~B}(30,0.2)$ | $Y \sim \mathrm{~B}(30,0.8)$ | B1: using or writing $\mathrm{B}(30$, their $\mathrm{P}(L<0.4)$ or $\mathrm{B}(30$, their $\mathrm{P}(L>0.4)$. If they have not written these probabilities in this part use answer from part (a) ie $\mathrm{P}(L<$ 0.4) = (a) or $\mathrm{P}(L>0.4)=1-(\mathrm{a})$ |  |
|  | $\mathrm{P}(Y \leq 3)=0.1227$ | $\mathrm{P}(Y \geq 4)=0.1227$ | M1: dependent on previous B mark being awarded. Using $\mathrm{B}(30, \mathrm{P}(L>0.4)$ with $\mathrm{P}(Y \leq 3)$ written or used <br> Or <br> $\mathrm{B}(30 \mathrm{P}(L<0.4))$ with $\mathrm{P}(Y \geq 4)$ written or used <br> A1: awrt 0.123 |  |


|  |  | $\mathrm{M} 1: \operatorname{Using} 1-\mathrm{F}(0.4)$ <br> $\operatorname{or~} \mathrm{F}(0.5)-\mathrm{F}(0.4)$ <br> (e) $\mathrm{P}(X \leq 0.5)-\mathrm{P}(X \leq 0.4)$. <br> Must see some substitution of 0.4 <br> A1: $\frac{1}{25}$ or 0.04 only | M1A1 |
| :--- | :--- | :--- | :--- |


| (f) | $\mathrm{Po}(4)$ | B1ft: using or writing $\operatorname{Po}(4)$ <br> NB for ft they must either write $100 \times$ "their 0.04 " and use Poison or write Po("their $\lambda$ ") Allow P instead of Po | B1ft |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7)$ | M1 using or writing 1- $\mathrm{P}(X \leq 7)$ If using normal approximation, they must either write this or $\frac{7.5-4}{2}$ or $\frac{7.5-4}{\sqrt{3.84}}$ or $\frac{7.5-4}{\text { awrt } 1.96}$ or $\frac{7.5-20}{\sqrt{16}}$ | M1 |
|  | $\begin{aligned} & =1-0.9489 \\ & =0.0511 \end{aligned}$ | A1 awrt 0.0511 | A1 |


| Question <br> Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
|  |  | Notes |  |
| 5(a) | $\begin{array}{ll} X \sim \mathrm{Po}(4) & \\ \mathrm{P}(X=0)=0.0183 & \mathrm{P}(X \geq 8)=0.0511 \\ \mathrm{P}(X \leq 1)=0.0916 & \mathrm{P}(X \geq 9)=0.0214 \end{array}$ | M1: using Po(4), need to see a probability from $\mathrm{Po}(4)$, need not be one of the 4 given here. May be implied by a single correct CR | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ |
|  | $\begin{aligned} \text { CR } X & =0 \\ X & \geq 9 \end{aligned}$ | A1: $X=0$ or $X \leq 0$ or $X<1$ <br> A1: $X \geq 9$ or $X>8$ <br> Any letter(s) may be used instead of $X$ eg CR or $Y$ or in words SC candidates who write $\mathrm{P}(X=0)$ and $\mathrm{P}(X \geq 9)$ award M1A1 A0 <br> NB Candidates who write $8<x \leq 0$ oe get M1A0A0 |  |
| (b) | $\mathrm{H}_{0}: \lambda=4 \quad \mathrm{H}_{1}: \lambda \neq 4$ | B1: both hypotheses correct, labelled $\mathrm{H}_{0}$ or NH or $\mathrm{H}_{\mathrm{n}}$ and $\mathrm{H}_{1}$ or AH or $\mathrm{H}_{\mathrm{a}}$ may use $\lambda$ or $\mu$. These must be seen in part (b) | B1 <br> B1 ft |
|  | There is evidence that Liftsforall's claim is true <br> or There is insufficient evidence to doubt Liftforall's claim | B1: ft their CR only, Do not ft hypotheses.Needs to include the word Liftsforall. If no Critical region stated in part (a) award B0 or $\mathrm{P}(X \leq 3)=$ awrt 0.434 and a correct conclusion. |  |
| (c) | $0.0183+0.0214=0.0397$ | B1: Awrt 0.0397 | B1 |
| (d) | $\mathrm{P}(B \leq 3 \mid B \sim \operatorname{Po}(6))=0.1512$ | M1: using Po(6) and writing or using $\mathrm{P}(B \leq 3)$ oe. A1: awrt 0.151 | M1 A1 |
|  | $X \sim \mathrm{~B}(4,0.1512)$ | B1ft: dep on M1 being awarded. Using or writing $\mathrm{B}(4$,"their 0.151 ") for use they need $(1-p)^{4}$ or $p(1-p)^{3}$ or $p^{2}(1-p)^{2}$ | dB1ft |
|  | Alternative method for first 3 marks |  |  |
|  | $\mathrm{P}(B \geq 4 \mid B \sim \operatorname{Po}(6))=0.8488$ | M1: using $\operatorname{Po}(6)$ and writing or using $\mathrm{P}(B \geq 4)$ oe A 1 : awrt 0.849 | M1 A1 |
|  | $Y \sim \mathrm{~B}(4,0.849)$ | B 1 ft : dep on M1 being awarded. Using or writing B(4,"their 0.849") for use they need $(p)^{4}$ or $p^{3}(1-p)$ or $p^{2}(1-p)^{2}$ | dB1ft |
|  | If $0<p<0.5$ |  |  |
|  | $\mathrm{P}(X \leq 1)=\mathrm{P}(X=0)+\mathrm{P}(X=1)$ | M1: using or writing $\mathrm{P}(X=0)+\mathrm{P}(X=1) \text { oe }$ | M1 |
|  | $(1-0.1512)^{4}+4 \times(1-0.1512)^{3} \times 0.1512$ | M1: $(1-p)^{4}+4 \times(1-p)^{3} \times p$ oe | dM1 |
|  | $=0.889$ | A1: awrt 0.889 | A1 |
|  | If $\mathbf{0 . 5}<\boldsymbol{p}<1$ |  |  |
|  | $\mathrm{P}(Y \geq 3)=\mathrm{P}(Y=3)+\mathrm{P}(Y=4)$ | M1: using or writing $\mathrm{P}(X=3)+\mathrm{P}(X=4)$ oe | M1 |
|  | $4 \times(0.8488)^{3} \times 0.1512+(0.8488)^{4}$ | M1: $(p)^{4}+4 \times(p)^{3} \times(1-p)$ oe | dM1 |
|  | $=0.889$ | A1: awrt 0.889 | A1 |

NB: a correct answer implies full marks, lose the final A mark if got awrt $\mathbf{0 . 8 8 9}$ and go on to do more work

| Question <br> Number | Scheme | Marks |  |
| :---: | :--- | :--- | :--- |
|  | NB: All powers of 1 must be simplified for the Accuracy(A) marks | notes |  |
| $\mathbf{6 ( a )}$ | $\left[\frac{k x^{n+1}}{n+1}\right]_{0}^{1}=1$ | M1: attempting to integrate <br> $x^{n} \rightarrow x^{n+1}$ and putting equal to 1, <br> ignore limits <br> A1: correct integration | M1A1 |
|  | $k=n+1$ | A1: $k=n+1$ Do not accept $\frac{n+1}{1^{n+1}}$ | A1 |

(b)

$$
\int_{0}^{1} k x^{n+1} \mathrm{~d} x=\left[\frac{k x^{n+2}}{n+2}\right]_{0}^{1}
$$

M1: Writing or using $\int_{0}^{1} k x^{n+1} \mathrm{~d} x$, ignore limits. Allow $\int_{0}^{1} k x(x)^{n} \mathrm{~d} x$
Allow substitution of their $k$
A1: correct integration $\frac{k x^{n+2}}{n+2}$

$$
=\frac{n+1}{n+2}
$$

A1: correct answer only- must be in
-

| M1: Attempting to integrate |  |
| :--- | :--- |
| $\int_{0}^{1} k x^{n+2} \mathrm{~d} x, x^{n+2} \rightarrow x^{n+3}$, ignore |  |
| limits. Do not allow substitution of $k$ |  |
| if it has $x$ in it. This must be on its |  |
| own with no extra bits added on. | M1 |
| A1: correct answer only | A1cao |
| SC if they have $\frac{k}{n+2}$ as answer to |  |
| $\operatorname{part(b)~award~A1~for~} \frac{k}{n+3}$ |  |


| (d) | $\operatorname{Var}(X)=\frac{3}{5}-\left(\frac{3}{4}\right)^{2}=\frac{3}{80}$ | M1: using "their(c)" $-[" t h e i r(b) "]{ }^{2}$ with $n=2$ or correct $\operatorname{Var}(X)$ <br> Using $\int_{0}^{1} k x^{4} \mathrm{~d} x-\left[\int_{0}^{1} k x^{3} \mathrm{~d} x\right]^{2}$ for $\operatorname{Var}(X)$ | M1 |
| :---: | :---: | :---: | :---: |
|  | $\operatorname{Var}(3 X)=9 \operatorname{Var}(X)$ | M1: for writing or using $9 \operatorname{Var}(X)$ or $3^{2} \operatorname{Var}(X)$ | M1 <br> A1cso |
|  | $=\frac{27}{80}$ oe or 0.3375 or 0.338 | A1: cso |  |


| Question <br> Number | Scheme | Marks |
| :--- | :--- | :--- |

7


